
CLOUD NATIVE
MICROSERVICES

GUIDE
TO

The New Stack

Guide to Cloud Native Microservices

Alex Williams, Founder & Editor-in-Chief

Core Team:

Bailey Math, AV Engineer

Benjamin Ball, Marketing Director

Gabriel H. Dinh, Executive Producer

Joab Jackson, Managing Editor

Judy Williams, Copy Editor

Kiran Oliver, Podcast Producer

Lawrence Hecht, Research Director

Libby Clark, Editorial Director

Michelle Maher, Editorial Assistant

© 2018 The New Stack. All rights reserved.

20180828

3Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Table of Contents
Introduction .. 4

Sponsors .. 7

SECTION 01 - CONSIDERATIONS FOR A MICROSERVICES TRANSITION

01 - Introduction to Cloud Native Microservices ..10

02 - Business and Process Decisions for a Microservices Transition22

KubeCon + CloudNativeCon: Redefining Cloud Native to Focus on Business Value ...35

SECTION 02 - DEPLOYING MICROSERVICES

03 - Migration Strategies for Microservices ..39

04 - A Case Study of Questback’s Phased Approach to a Microservices Transition 50

05 - Microservices Security Strategy ...56

06 - Deploying Microservices ..65

07 - DevOps Practices for Microservices ..73

Twistlock: Automation Makes Microservices Security Practical to Deliver80

SECTION 03 - MANAGING MICROSERVICES IN PRODUCTION

08 - Microservices Monitoring ..84

09 - Microservices Pricing ...92

10 - Disaster Recovery for Microservices ..97

11 - A Case Study of How WeatherBug Uses Microservices Without Containers105

Dynatrace: When Breaking Up a Monolith, Consider Data as Much as Code110

SECTION 04 - BIBLIOGRAPHY

Bibliography ..113

Closing ..123

Disclosure ..124

4Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Introduction
Application architectures that scale on sophisticated and distributed resources

reflect an organization’s business objectives. How the business achieves its

objectives is largely dependent on the developer teams building the services.

Their workflows and the technologies they employ create what’s in vogue to

call microservices.

Building microservices provides scale and automated workflows that get

implemented through small teams that each work on specific services. The

New Stack’s “Guide to Cloud Native Microservices” explores how teams build,

deploy and manage these scaled-out application architectures with

technologies that fit the organization’s objectives.

To be most effective, microservices must be built by organizations with clear

business objectives. They will have teams led by experienced, full-stack

developers who understand the organization’s goals. These technologists are

often making recommendations to senior management who must align on

strategy. It is through the experiences of the teams led by full-stack

developers that workflows evolve and the services become more meaningful

and important in the overall deployment and management of the technologies

that support the organization and its goals.

Organizations that do find success with microservices gain an approach and

workflow that optimizes their compute, storage and networking resources.

This allows developer teams to work independently toward a common goal

across the organization. By scaling the development across individual teams,

production increases. Work is completed in parallel, which may cause

challenges in itself. The DevOps team must consider the compute, networking

and storage requirements of all the combined developer teams. Optimizing

the architecture for performance allows developers to have more capabilities

http://www.thenewstack.io

5Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION

and, at the same time, allows DevOps teams to use feedback loops for

continuous efficiencies and improvements.

Organizations that take the time to analyze an approach to microservices

have two roads to follow.

They may choose a route to adopt microservices with consideration for the

choices made by generations of teams before them. It means having a clear

understanding of what microservices offer, but also facing the inherent risks

and disruptions that inevitably will come when decoupling monolithic

architectures. There is no return once the microservices journey begins. The

decision is clear. It is assumed a microservices approach will lead to

management challenges — that is without question. Senior teams with

experience know there will be changes to team structure and workflows that

will take time to adapt into the organization. That’s fine. They have accepted

that going back to the monolith has no business merit and would be unhealthy

for the organization.

The road to microservices will be one many organizations will decide not to

follow. These organizations have ultimately decided to optimize, as much as

possible, the monolithic technology stacks that serve as core to the overall

enterprise. An investment in developer-oriented approaches may be a matter

to revisit in another analysis, especially as the technologies put more

emphasis on the developer experience.

The work presented here by The New Stack is based upon research, reporting

and discussions with senior technologists and the people using these

technologies. It’s a dynamic space but, ironically, still relatively unknown for

most people. The community is growing fast, but also still has a sense of

openness and excitement of a culture that is still developing.

How communities develop over time is a consideration for all of us. We need

healthy open source communities that are inclusive and reflective of the many

http://www.thenewstack.io

6Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION

backgrounds that developers can come from. Application architectures are

developing fast, but there needs to be an emphasis on who is actually building

the technologies so the end-user has an experience that is reflective of their

own workflows and behaviors.

The New Stack’s goal is to provide a comprehensive guide and resource that

explains and analyzes how organizations build, deploy and manage

scaled-out architectures. It’s a human approach intended to help understand

the dynamics of DevOps cultures, the engineers who manage them and the

technologies they use. We hope you find the ebook useful and a way to think

through the complexities that come when organizations, teams, workflows

and technologies intersect.

Thanks for reading!

Alex Williams

Founder and Editor-in-Chief, The New Stack

Libby Clark

Editorial Director, The New Stack

http://www.thenewstack.io

7Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Sponsors
We are grateful for the support of our ebook sponsors:

Dynatrace is the leader in Software Intelligence, purpose built for the

enterprise cloud. It’s the only AI-assisted, full stack and completely automated

intelligence platform that provides deep insight into dynamic, web-scale,

hybrid cloud ecosystems. That’s why the world’s leading brands trust

Dynatrace to deliver perfect user experiences.

KubeCon + CloudNativeCon conferences gather adopters and technologists to

further the education and advancement of cloud native computing. The vendor-

neutral events feature domain experts and key maintainers behind popular

projects like Kubernetes, Prometheus, gRPC, Envoy, OpenTracing and more.

Trusted by 25% of the Fortune 100, Twistlock is the most complete, automated

and scalable cloud native cybersecurity platform. Purpose built for containers,

serverless, and other leading technologies — Twistlock gives developers the

speed they want, and CISOs the control they need.

http://www.thenewstack.io
http://bit.ly/2DCTwne
http://bit.ly/2v5jY2N
http://bit.ly/2sOzS1A

8Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER #: CHAPTER TITLE GOES HERE, IF TOO LONG THEN...

SECTION 1

CONSIDERATIONS
FOR A MICROSERVICES
TRANSITION
Breaking up the monolith can be a daunting task — but also an exciting
engineering and business challenge. Get started with practical advice from
leaders and experts in the field.

http://www.thenewstack.io

9Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Contributors

Michelle Gienow writes regularly for The New Stack, including

the weekly Code N00b column. She is a frontend web developer

in the making, erstwhile journalist and late-night recreational

baker of peanut butter cookies.

Lawrence Hecht is research director at The New Stack. He has

been producing research reports about information technology

markets for the last 15 years. Most recently, Lawrence managed

“voice of the customer” surveys for 451 Research and

TheInfoPro about enterprise IT B2B markets such as cloud computing, data

analytics and information security.

http://www.thenewstack.io
https://github.com/mgienow/
https://github.com/mgienow/
https://twitter.com/LawrenceHecht
https://twitter.com/LawrenceHecht

10Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Introduction to Cloud
Native Microservices

M
icroservices are an architectural approach to optimize resources that

provide the compute, storage and networking for at scale services

and software on sophisticated, fast, distributed infrastructure. Most

organizations with any IT history have traditionally built software on

virtualized technology stacks that run on machines that can be maintained

manually by teams of operators. Today, developers use cloud services at scale

to build application architectures and automate workloads. The days of

machine-oriented architectures are passing — application-oriented

infrastructures are what’s in vogue. Today, the resources provide what a full-

stack developer requires to build application architectures. The need of

developer teams to more fully open resources for application architectures is

testament to the deep demand for DevOps tooling to run on powerful

distributed architectures.

Demand for technology tools, services and platforms is encompassed in what

constitutes microservices. The balance of unlimited compute, networking and

storage resources to run any number of services presents opportunities and

obstacles. Complexity is often not discussed amid the hype that surrounds

microservices these days. It’s like any over-excited, new approach that catches

CHAPTER 01

http://www.thenewstack.io

11Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

the technology community’s attention. What may, on the surface, look like the

perfect way to develop, deploy and manage software is often far more complex

than what first appears. It’s a journey that takes companies into the depths of

understanding the business objectives, team development, workflows and

services they use to build out application architectures.

Often, change is not easy for people whose technical backgrounds do not

match the modern approaches that microservices offer. Microservices require

organizations to rethink the existing software architecture that runs their

business, and how the organization can adapt to practices that require new

technical skills and a cultural shift to match. It’s daunting, risky and not for

everyone.

Still, business and IT teams are rushing with pronouncements like, “let’s get

off the monolith by next quarter!” Audacious goals aside, about 90 percent of

developers are at least looking at a microservice architecture for some

workload. Yet, when asked more specifically about their use in production

applications, the numbers drop: 29 percent in a Dimensional Research and

LightStep 1 survey and 26 percent in a DZone survey. 2 As with any rapidly

trending Next Great Thing, however, it can be tough to sort through all the

hype to understand how microservices actually apply to everyday, rubber-

meets-the-road project work. It helps to start with the practical basics of

microservices, then weigh some high-level benefits and drawbacks to the

software architecture itself.

Defining Microservices
Microservices are an architectural approach to software development based on

building an application as a collection of small services. There is no standard

definition for what amount of code constitutes a “small service.” But some

experts say it’s about the size at which a team can query the service’s health

with a single request that returns a “yes” or “no” answer. 3 Similarly, a service

http://www.thenewstack.io

12

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

© 2018

A Microservice Architecture

Source: https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

MicroservicesAPI
Gateway

Authentication

—

Security

—

Logging

—

Monitoring

—

Load Balancing

—

and more...

Identity

Provider

CDN
Static

Content
Management

Service

Discovery

Client

Remote

Service

Remote

Service

Service

Service

Service

Service

Service

API

API

API

API

API

FIG 1.1: Microservices are small, independently scaled and managed services. Each
service has its own unique and well-defined role, runs in its own process and commu-
nicates via HTTP APIs or messaging.

is too big if it requires more than one team to manage it. Each service has its

own unique and well-defined role, runs in its own process and communicates

via HTTP application programming interfaces (APIs) or messaging. Each

microservice can be deployed, upgraded, scaled and restarted independently of

all the sibling services in the application. They are typically orchestrated by an

automated system, making it possible to have frequent updates of live

applications without affecting the end users.

Individuals are comfortable with the concept of using applications. These days,

an average enterprise organization uses, at minimum, a dozen different

software products and integrations. Logging business expenses, schedule

tracking and payroll management are a few examples of how organizations

now use applications that run on cloud services.

It just makes sense to embrace compact and specialized tools that get each job

done in a manner that provides an elegant user experience, similar to what

http://www.thenewstack.io

13Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

individuals get when using a consumer application for posting photos, videos

and connecting with others on social networks. Microservices use the

distributed architectures that embody cloud services. They scale by developing

patterns that fit together in a loosely coupled manner. Like Lego™ blocks,

components in a microservice snap in place to build a unified model.

First, developers identify the separate service “pieces” necessary to build their

project, such as search, authentication, messaging and sales processing. Then

they choose from the smorgasbord of services, libraries and code snippets

available, from open source to turn-key enterprise solutions, and snap

everything together into a functional application.

The Cloud Native Wave
The concept of cloud native microservices stems from the evolution of

container architectures. Before container-based architectures, developers

would use approaches that required building a technology stack that they then

deployed on cloud services or robust enterprise architectures. The applications

were machine-oriented and optimized using a generation of tools that

monitored the software and its performance on cloud services and the

enterprise. It was a step beyond service oriented architectures (SOA), although

some would argue SOAs are simply microservices that have been rebranded by

vendors to sell related offerings. There is some truth to this. Microservices can

be considered a type of SOA. Containers just make the approach more widely

available, and reduce the degree of risk that came with an SOA. An SOA ran on

virtual machines (VMs) that required time and investment to build, deploy and

run. The VMs ran on the operating system that also had to be ported to run in

an SOA environment. It was heavy, manual work that left little room for taking

risks to find the best way to actually run the SOA itself.

Containers changed the game, with Docker leading the charge. Docker

represented the evolution of the SOA and the age of Platform as a Service

http://www.thenewstack.io

14Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

(PaaS). Docker drove adoption through its simplicity, ease of use and low risk.

It packaged the Linux container technology into something accessible and

usable that developers embraced. Container technologies could be built, run

and managed with little overhead — a stark contrast to the heavyweight

world of SOA, which required substantial investments, particularly in

networking and storage.

Containers now serve as the underlying foundation for microservices,

connecting through API gateways and new approaches such as gRPC. In total,

containers have made SOA feasible to implement at scale by simply making

technologies easier to use, with far less risk involved than ever before.

Microservices are closely correlated with the use of DevOps; continuous

integration and continuous delivery (CI/CD); and containers. 4 So closely, in

fact, that the terms “microservices” and “containers” are often used together.

However, containers and microservices are not the same thing. A microservice

may run inside a container, but it could also run as a fully provisioned virtual

machine. That said, container-based — and open source — platforms, like

Docker and Kubernetes, are a very effective way to develop, deploy and manage

microservices. Many mature and robust tools, platforms and other services

already exist in the container space, rendering containerization a natural fit for

microservices-based applications.

While containers and microservices exist independently and serve different

purposes, they’re often used together; consider them the PB&J of DevOps. 5

Containers are an enabling technology for microservices, which is why

microservices are often delivered in one or more containers. Since containers

are isolated environments, they can be used to deploy microservices quickly

and securely, regardless of the coding language used to create each

microservice. Once a microservices-based application reaches any substantial

size, it also becomes virtually impossible to manage without containers.

Containerized microservices running on top of an orchestration platform such

http://www.thenewstack.io

15Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

as Kubernetes or Mesos — in the cloud, on premises or a hybrid of both — are

the current definition of scale-out, cloud native applications.

It’s important to note that although containers are the “de rigeur” way of

packaging code into microservices, you could also package an entire

monolithic application into a container and it wouldn’t create a microservice.

As cloud computing evolves further, packaging can, and likely will, change as

more organizations are freed from legacy infrastructure and/or start to

evaluate use cases for serverless architectures. In fact, many proponents of

microservices say that they are just a stepping stone to multi-cloud and

serverless computing, an emerging approach for using resources to automate

functions and fill gaps in application architectures.

“I’m not happy with how our industry has coupled microservices and

containers. They’re an implementation detail. It’s not an important abstraction,

except in a world where you have a lot of legacy apps on VMs that need to

migrate to the same technology stack,” said Ben Sigelman, CEO and

co-founder, LightStep.

Benefits of Microservices
By enabling small autonomous teams to develop, deploy and scale their

respective services independently, microservices essentially parallelize

development — thereby speeding up the production cycle exponentially. This

agility was the top reason large enterprises cited for adopting microservices in

the Dimensional Research and LightStep report, followed by improved

scalability.

“It’s very simple: Microservices save developers from having to waste time

reinventing already solved technical problems,” said Jamie Dobson, co-founder

and CEO of Container Solutions.

Additionally, Dobson noted, continuous integration and deployment are

http://www.thenewstack.io
https://www.linkedin.com/in/bensigelman
https://lightstep.com/
https://twitter.com/jamiedobson?lang=en
https://container-solutions.com/

16Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

basically built into a microservices architecture. “Microservices take a lot of

infrastructure risk out of the project straight away. With the infrastructure

made almost invisible, microservice teams can iterate quickly, often in hourly

cycles, so that value is increased while ‘wrong feature’ risk is decreased in a

continuous fashion,” he said.

In other words, with microservices, each developer on a team gets to forget

about underlying infrastructure and focus on their piece of the project. Then,

in production, if individual project modules don’t work exactly right together,

it’s easy enough to isolate, disassemble and reconfigure them until they do.

The components are loosely coupled — again, Legos serve as an apt

metaphor — and this provides the capability to run at scale with

interchangeable pieces that snap into the application architecture. Their

isolated and stand-alone structure brings security benefits as well, because

they are easier to control through modern security platforms that automate

and enforce security policies.

Engineering teams may more easily scale and maintain velocity as the

organization grows. The main benefit of a microservices architecture isn’t

technical — it’s in team development and people management. By contrast,

monolithic applications become impossible to adapt and manage when the

codebase grows to such a scale. The teams to manage application architectures

of such size must never let the monolith go down. If it does, the business goes

with it. Writing scripts to prevent application leakage and building varieties of

patches between major version upgrades becomes an important priority for

enterprise architects. Features are defined well in advance and fit into the

monolith according to priority. The customer is in the middle, forcing decisions

that may be short-term fixes, but pose longer-term issues, such as custom

scripts that decay over time and depend on people with institutional memories

of the enterprise infrastructure. That can be an ugly game in itself, as the

issues customers have may not be met by the latest upgrade of the software.

http://www.thenewstack.io

17Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

“One major problem is that the [monolith]

application is overwhelmingly complex. It’s simply too

large for any single developer to fully understand. As

a result, fixing bugs and implementing new features
correctly becomes difficult and time consuming.
What’s more, this tends to be a downwards spiral. If

the codebase is difficult to understand, then changes
won’t be made correctly.”

— NGINX, “Microservices: From Design to Deployment.” 6

Many organizations have reached a point at which the pain of managing the

monolith outweighs the pain of the organizational change required to adopt a

new, microservices approach. Microservices adoption is the best alternative for

such organizations — though it’s not without its own challenges.

Drawbacks to Microservices
Microservices are the antithesis of the classic monolithic application, with

obvious benefits. However, as with any developing technology, the early

adoption learning curve can be steep. Currently, the approach is most

effectively embraced by large companies like Netflix and PayPal, which have

been able to shift to a microservices architecture thanks to robust in-house

resources and engineering teams.

“It’s great when you are a very large, resource-rich enterprise, with individual

teams able to manage each service and ensure reusability and discoverability,”

said Mathias Biilmann, CEO and co-founder of Netlify.

However, the pain is real for everyone else in between. Only 1 percent of

enterprises using microservices said they had no challenges with the

architecture, according to a Dimensional Research and LightStep report. 7

Operational overhead, logging and monitoring challenges, and lack of skills

http://www.thenewstack.io
https://www.nginx.com/
http://mathias-biilmann.net/about
https://www.netlify.com/

18

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

Top Challenges When Using Microservices

Source: https://go.lightstep.com/global-microservices-trends-report-2018 © 2018

% of Respondents Facing Each Challenge

We have no challenges

Other

Don’t know how to manage increase in data

Increased cost for log aggregation

Don’t have needed skills to build and manage
microservice architecture

Harder to identify root cause of
performance degradations or issues

Teams are not organized to
effectively leverage microservices

Each additional microservice
increases operational challenge 56%

47%

45%

45%

21%

17%

4%

1%

FIG 1.2: Moving to microservices most commonly creates operational challenges as
the IT team is largely responsible for integrating and maintaining the infrastructure
for many different services.

were cited as top challenges in the report. Moving away from a monolithic

application architecture means the loss of an opinionated workflow that glues

all the pieces together. Most commonly, adopting a microservices architecture

increases the operational cost, as the IT team is largely responsible for

integrating and maintaining the infrastructure for many different services.

Teams must find the difficult balance between a microservices vision, and

what realistically needs to happen to make it work and succeed.

“As we split up monoliths into microservices, we risk getting a very

fragmented system where developers need to spend a lot of time and effort on

gluing together services and tools, and where there’s a lack of common

patterns and platforms that makes working across projects viable,”Biilmann

said. “The possibilities are awe-inspiring, but in order to truly take advantage

of them, we need vendors to emerge that can build the glue that enables a

http://www.thenewstack.io

19Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

one-click setup.”

A comparison can be drawn to the emergence of the LAMP stack. Freely

available tools like Linux, the Apache web server, MySQL and PHP opened up

new possibilities for web development. But the LAMP architecture truly took

off when companies built integrated tooling around projects like WordPress,

Drupal and Joomla.

In a true microservices approach, teams run only the exact small services they

need, and nothing else. It’s a sleek setup, but these services are not aware of

each other until you also step in to orchestrate them. Until recently, this

implementation and orchestration piece have been beyond the engineering

reach of many smaller to mid-size organizations.

Splitting a monolith into many smaller, independent services has many

advantages in speed and agility, but many challenges as well. 8 Microservices

architectures can increase operational overhead for support and maintenance,

as each service has its own languages and requirements. Monitoring and

security become more complex and require new levels of automation and

tooling. And because communication between services is now taking place over

a network, it generates new requirements for service discovery, messaging,

caching and fault tolerance that can strain a system and possibly lead to

performance issues if not handled properly. While a service mesh addresses

many of these issues, introducing one without traffic management creates its

own set of problems that can lead to deep performance issues.

“The issue is, you can do all the testing that you want beforehand, and be

fairly confident about the code that you’re trying to release. But then when you

actually put it into production it runs into some kind of issue, because you

don’t actually know how the code’s going to be behave in production,” said

Christian Posta, chief architect for cloud development at Red Hat. 9

“Traffic management is really about decoupling a deployment from a release. A

http://www.thenewstack.io
https://twitter.com/christianposta
http://red.ht/2uJGuQo

20Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

deployment is when you have your new code, a new version, and you bring it to

production, but it doesn’t take any customer traffic yet. You’re able to do smoke

tests, and internal tests, and it lives in production. When you do a release,

that’s when you start to try to figure out: What traffic are we going to bring to

this new version of code? If you have the ability to control the traffic to very

fine grain levels [you can] segment it, control, and gradually roll out new code

changes,” Posta said.

Organizations without the engineering resources or skill to knit together a

stable infrastructure with existing open source code and tools have struggled

to make the benefits of microservices outweigh the challenges. Operational

and performance issues can also plague teams that do not communicate about

their services — dependencies and version compatibility — and must reverse

the work that has already been written into code when they fail in production.

Fortunately, a market leap forward is now happening with microservices. Many

companies are now producing not just microservices themselves, but the

platforms, tools and frameworks necessary for joining them seamlessly

together.

Microservices Are Not for Everyone
Infrastructure for distributed services is mature, but deeper efficiencies can

only come with better declarative systems that arise from refined automation

techniques and improved observability. This can be tricky, as no microservice

is exactly alike. They can be snowflakes, as much as any custom workflow can

be. The difference is in the architecture underneath and how it fits with the

ongoing development of approaches to microservices for different workloads.

It’s important to set boundaries so microservices are not perceived as a

panacea or a fun project offshoot that takes more management than the

microservices deserve. Developers who built scaled-out microservices back in

the 2014 to 2016 heyday talk about developers chatting over coffee and

http://www.thenewstack.io

21Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

INTRODUCTION TO CLOUD NATIVE MICROSERVICES

deciding about the new microservice they were going to build. Now what

happens if there are dozens of teams that each decide to create their own

microservices? It’s entirely possible to manage, but efficiencies are sacrificed

and that affects the progress to optimize and attain better performance.

Proof that microservices are effective goes without question. But a well-built

monolithic architecture can scale just as well and remains the best option in

many scenarios. Running multiple instances of the same service or worker, for

example, doesn’t necessarily require microservices. It’s also entirely possible to

create unscalable microservices. It’s important to first consider the problem,

before identifying the best solution.

“Microservice architecture is faster, safer, cheaper — much of the time, it’s the

better way,” said Chris Bach, Netlify’s other co-founder.

However, the ecosystem is now approaching critical mass in terms of

infrastructure and support around the technology. Viable workflows are now

available for use by organizations of any size. And this means that

microservices are fast becoming just another tool in the DevOps toolkit. The

quest is for better and deeper uses of resources. That, in turn, creates new

space to deliver additional services that further realize the potential of

declarative and elegant workflows, tools and platforms.

http://www.thenewstack.io
https://twitter.com/chr_bach?lang=en

22Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Business and Process
Decisions for a
Microservices Transition

C
loud native microservices are a truly exciting architectural evolution,

especially when it comes to building, deploying and managing

complex distributed applications. Most of the talk around

microservices, however, goes straight to the technology: continuous

integration and deployment, containers, orchestrators and so on. While the

technical implementation is important, there’s something even more critical to

consider.

Microservices must fit with an organization’s objectives. A developer may build

microservices, but the architecture only becomes valuable when it is paired

with a business objective. Critical questions must be asked, starting with the

business use cases, existing teams, skills and responsibilities — the decision

depends on the vision and what the organization aims to achieve.

The people within the organization who have experience in implementing

complex architectures will have to pose an important question and get it

answered before moving forward: Are we the right organization for a

microservices architecture?

CHAPTER 02

http://www.thenewstack.io

23Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

“ Clients come to us looking to use microservices

as a solution to a technological problem. In reality, it

is often a technological solution to an organizational
problem.”

— Jamie Dobson, co-founder and CEO of Container Solutions.

Evaluating Cloud Native Services
Evaluating cloud native microservices for enterprise adoption has less to do

with a company’s size, sector or even the actual technology, than with the

enterprise itself. First and foremost, a microservices migration —from

decision to execution — should be driven by how the enterprise is organized

and managed:

• Business model: Is software a differentiator for the business? If so, the

developer team must continue to grow and scale as the organization

requires more resources and services capabilities. Microservices-based

architectures allow for faster, iterative development that can be used in

workflows across multiple teams. Organizations with a reliance on

proprietary, monolithic solutions will not be as well-suited to a

microservices approach. The commercial software agreements to keep

systems-of-record managed to service-level agreements (SLAs) means a

radical shift for companies if they choose to follow a route that takes them

into microservices discussions. Microservices will likely be more costly to

implement for organizations fully reliant on commercial software

platforms. The engineering support and overhead needed for microservices

will cost more than they are worth in agility and scalability.

• Culture and internal processes: Microservices require a new set of tools

and processes — and the breaking of old ones. It can just be a difficult shift

for an organization that is responsible for managing monoliths to make an

abrupt change in workflows. Embracing DevOps principles is the key to

http://www.thenewstack.io
https://twitter.com/jamiedobson?lang=en
https://container-solutions.com/

24Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

success with microservices. Yet, as an example, teams may be resistant to

moving from a traditional waterfall methodology to an agile approach.

“And the resistance is not entirely unreasonable, if you realize that the

humans involved have what they’re used to— they have maybe retirement

in sight, not too far in the future — and they dislike the idea of everything

changing when they just got it the way they liked it,” said Bridget

Kromhout, principal cloud developer advocate at Microsoft. 10

The fundamental complexity of microservices is in the application architecture

itself: Every service can require its own support team, tools and infrastructure

depending on the architecture. And not every company is in the right place to

make the move. Not that adopting the architecture becomes impossible,

experts stress, just that the process will be lengthier or more complicated. For

many organizations with the wrong business motivations or culture, the cost

will be higher than the benefits.

“We can’t solve … every single problem that

we’re going to have in our organization by just
implementing the right technical solution, right?

Because our organizations are complex systems
that also have people in them who may act in

unpredictable ways.”

— Bridget Kromhout, principal cloud developer advocate at

Microsoft. 11

So when might microservices not be a good fit for an enterprise?

• Sector sensitivities: Certain industries, for example, financial services and

health care, face legal, reporting and compliance requirements that need to

be reconciled with newer technology.

• The venerability factor: A global company in business for decades,

especially one with an average workforce retention of more than ten years,

http://www.thenewstack.io
https://twitter.com/bridgetkromhout
http://bit.ly/2h30eoP

25Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

will very likely have a harder time navigating the seismic shift to a

completely new architecture than will a younger, more compact or simply

more agile organization.

• “Stuck” companies: These are risk-averse companies with a long

decision-making chain and rigid hierarchy. Ultimately these organizations

are not well suited, and possibly even resistant, to the rapid adaptation

required when adopting a new and responsive microservices paradigm.

Jonathan Owens, lead site reliability engineer at New Relic, suggests that

organizations considering a move to a container and microservices

architecture should ask themselves the following questions: 12

• What product does your operations group provide to developers and what

abstraction layer does that product use?

• Is that product the right one for your business or are containers a better fit?

• Are containers so much better that you’re willing to change the

abstraction, and therefore the entire product your operations team offers,

in order to use them?

• Are you ready to create new roles to manage the scale and reliability of this

new abstraction?

“No organization changes like this overnight. The journey from an idealized

new architecture to the first production deploy requires changing many minds

and creating new processes, which isn’t always fun,” Owens said.

Finding engineers with microservices expertise who can make the necessary

tooling and architecture decisions can also be tough. Such experts include the

elusive “full stack developers” who understand the application at every layer:

from the network and hosting environment, to data modeling, business logic,

APIs and user interface and user experience (UI/UX). 13 These individuals are

http://www.thenewstack.io
http://bit.ly/2u3HCPd

26Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

in the unique position to see how the technical architecture and the

organization are interrelated. To make a successful microservices transition,

an organization needs a technical architecture that is built to scale, but equally

important is the team to maintain the structure.

This is why many organizations undertaking the transition to microservices

choose to work with a professional services company that specializes in

helping clients build cloud native applications using a variety of different

architectures. Such consultants can help assess the organization’s need and

suitability for microservices, or direct them to more appropriate alternatives.

Are Microservices the Best Fit?
An organization that has a business reason for microservices makes the

transition with the confidence of its team. The teams that lead the projects

have weight in the organization and can start setting best practices that fit

with existing workflows. Services can be adopted that propel the overall

development of the application architecture and ready the organization for

using more resources to run microservices.

Getting to the point of readiness takes skill and people management. The

services that suit a developer team will define the microservice. The goal is to

make the microservice a value that builds upon its base and continually

optimizes the developer experience.

Evaluating the application’s responsibilities is the first step in defining the

components of a microservices application, said Netlify Chief Technology

Officer (CTO) David Calavera — a microservices veteran from previous work at

Docker and GitHub.

Determining the interdependencies of the application’s responsibilities sets

the structure for the microservice. Connascence is a metric to evaluate an

application’s components and interconnections. Two or more components are

http://www.thenewstack.io
https://www.netlify.com/
https://www.linkedin.com/in/david-calavera/
https://en.wikipedia.org/wiki/Connascence

27Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

said to be connascent if when you change one of them, you also have to

change the other.

“With this relationship in mind, you can better evaluate if it’s worth having

different microservices, or if you should keep your monolith architecture,”

Calavera explained. In addition to these interdependencies, he said, teams

must bear in mind that separating these components into microservices will

introduce a network connection between them — which inevitably adds

complexity to the system.

Here you can see that application architecture development is a direct result of

how individuals and teams interact and communicate about their own — and

overlapping — orchestrations. In this, it’s apparent how architectures, such as

Kubernetes, have become more important. As more developers are added and

the application gets more sophisticated, so does the overall complexity of the

architecture. But as we have well seen, these application architectures are not

for everybody.

“You don’t want to end up adding unnecessary complexity at the cost of an

ideal architecture,” cautioned Calavera.

Assessing a Team’s Readiness
Having determined that there is a fit for microservices, the process of iterative

development begins. That’s the approach to follow, no matter what the project.

The transition should be gradual and distributed across small teams, with each

team tracking its workflow. In this manner, teams can map the architecture

independent of the underlying delivery mechanism. The most important

aspects of development are the workflows the teams use to build, deploy and

manage the application architecture. By breaking their workflows into tasks

that are documented and automated in Git, the process becomes declarative,

making the transition simpler and the infrastructure increasingly automated,

as it progresses to additional teams and services.

http://www.thenewstack.io

28Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

This was once called application lifecycle management (ALM), a field

dominated by the big tech giants of the late 1990s. It’s only now beginning to

change and achieve a fuller scope with the advent of practices rooted in

DevOps. The ALM market comes out of the dependencies on monoliths and the

cumbersome workflows they required with so many dimensions that needed to

be connected. There are countless examples of software categories that cater to

the monolith market. But many of these providers were also building on

monolith patterns. Scrum practices became the most sophisticated of

operations, only to face their own weight and heavy constraints. Updates

needed to be kept current, patches made and software agreements managed.

Consultation costs became part of the setup, the deployment and, increasingly,

the management of the monoliths. Go to a large vendor conference and they

are all there, offering consulting services for managing a monolith. Most are

focused on workflow patterns that have the sole intention of keeping the

monolith running without going down. Keep labor costs low, work on a budget

that follows a top-down workflow and apply that model as much as possible to

the new dimensions of what cloud services offer.

Microservices strategies reflect the most vital shift of the past five years in the

way software defines an organization. The monolith culture that divides

developers and operations teams is finding better balance, but deep separations

still exist that call for a new thinking and adjustment to new times.

The chasm may seem like it is narrowing, but the comparison of full-stack

developers to mainstream developers is by far favoring the mainstream in

terms of employment trends. The mainstream developers still follow Scrum

practices and are there to build on the monolith. But they are finding a path in

their own right through platforms and services that allow for simpler

workflows. It’s the workflows that constitute the most important shift in

behavior patterns. The workflows create new dimensions for understanding

inherent trade-offs that come when building, deploying and managing

http://www.thenewstack.io

29Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

systems and software architectures.

Deep efficiencies and capabilities come from developing patterns that can be

used for compute, networking and storage. Companies that adopt these

practices will benefit from the understanding that comes with comprehensive

analytics that will then give them more confidence in meeting customer needs.

Full-stack developers serve as guides on these journeys. They have a relatively

deeper understanding of the different layers in the technology stack. They can

help determine whether or not a team is ready to undertake a transition to

microservices and how to best approach the transition.

Teams must be ready to handle the extra complexity of having several services

running in production, rather than only one. It will overturn every process

teams already have in place, from version control and application deployment,

to monitoring and management in production.

They must identify and assess each one of the processes involved in the

development, testing and maintenance of a production service, then prepare

specific answers for how to adapt or replace them.

Implementing microservices is more about team structure — so each team has

clear ownership over a service — rather than creating a specific technical

functionality, said Matt Klein, Envoy maintainer and software engineer at Lyft,

in a media and analyst briefing at KubeCon + CloudNativeCon in Copenhagen.

“This all comes back to people. … What are the right ways of setting up people

so they can work together?”

An organization may be better off with a monolith if the underlying

infrastructure is tightly bound — if the interconnections are so interdependent

that the monolith can’t be broken into multiple pieces without it all falling

apart. Separate developer teams, in a microservices fashion, can’t work on the

monolith without overwriting each other’s work. Version control is

http://www.thenewstack.io
https://twitter.com/mattklein123?lang=en
https://www.lyft.com/
http://bit.ly/2DCTwne

30Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

unmanageable unless strictly supervised.

A microservices culture is loosely coupled, making services interchangeable.

The parts reflect the workflow adopted by the organization and the teams that

manage the overall application architectures. It’s a fusion of practices that are

connected through Git, declarative environments and connected services

across internal and external resources.

The factors inherent to monolithic cultures preclude managers from hiring

developers for microservices projects. It’s just unwieldy for multiple teams to

work on one monolith. The complexities come when one team may overwrite

another’s work. Version control becomes a nightmare. Until the pieces of the

monolith are distinct as microservices, the monolith needs to be managed in a

manner that keeps the pieces bound and the overall monolith running.

Another way to think about it is in terms of each microservice as a

deployment, said Dr. Donna Malayeri, product manager at Pulumi. 14 “The

platform doesn’t natively define what deployment means. It’s up to you to

define.” Some platforms, such as Amazon’s EC2 VM, in some respects are

better suited to a monolithic application than microservices, Malayeri said.

Breaking up the application into microservices is just as much, or more, work,

because now the team must deploy and coordinate all the components that

must be operable for the monolith to maintain uptime requirements.

Preparing for Launch
The best transition possible is the one that users never notice. Unfortunately,

mistakes in the process can lead to terrible outages. But beyond an honest

assessment of existing capabilities, there isn’t much else a team can do to best

prepare for the smoothest possible migration. There are simply too many

variables at play in complex, distributed systems interconnected through a

network. To some extent, the only way to know if it works is to put it into

production. Thus, microservices migrations are always planned to take place in

http://www.thenewstack.io
https://www.linkedin.com/in/donnamalayeri/
http://bit.ly/2OskRcW

31

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

closed

closed

open

open

half-open

© 2018

Circuit Breaker Pattern

Source: https://martinfowler.com/bliki/CircuitBreaker.html

http://techblog.constantcontact.com/software-development/circuit-breakers-and-microservices/

CLIENT CIRCUIT
BREAKER

MICROSERVICE

No failures.
Circuit breaker is closed.

Failures detected.
Circuit breaker remains closed
until failure threshold is reached.

Failure threshold reached.
Set circuit breaker to open.

call call

responseresponse

call call

responseresponse

call call

failurefailure
keep count until threshold,
then trip circuit breaker.

No failures.
Set circuit breaker to closed.

call

failure

After timeout period:
Set circuit breaker to half-open.

Failures continue.
Set circuit breaker to open
for another timeout period.

call

failure

call

failure

FIG 2.1: A circuit breaker object can monitor remote function calls for failures and
return error messages in order to prevent cascading failures.

stages. The best approach is to find a balance between the safety and the

effectiveness of the migration, also known as the efficiency–thoroughness

trade-off (ETTO) principle.

“ For safety and security reasons, it’s never

advisable to jump all the way in to microservices.

When transitioning to a different architecture, always
remember that keeping the full service up and

running is your first priority.”
— David Calavera, CTO at Netlify.

http://www.thenewstack.io
https://en.wikipedia.org/wiki/Efficiency%E2%80%93thoroughness_trade-off_principle
https://en.wikipedia.org/wiki/Efficiency%E2%80%93thoroughness_trade-off_principle
https://twitter.com/calavera
https://www.netlify.com/

32Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

© 2018

Branch by Abstraction Pattern

3. Create New Supplier and Switch Code

4. Full Swap

2. Create and Place Abstraction Layer as Intermediary

1. Current State

Client CodeClient CodeClient Code
Flawed

Supplier

New

Supplier

Abstraction

Layer

Abstraction

Layer

Client CodeClient CodeClient Code

New

Supplier

Abstraction

Layer

Client CodeClient CodeClient Code
Flawed

Supplier

Abstraction

Layer

Client CodeClient CodeClient Code
Flawed

Supplier

Source: https://martinfowler.com/bliki/BranchByAbstraction.html

FIG 2.2: The Branch by Abstraction pattern allows for a gradual, large-scale system
change.

Fortunately, previous pilgrims have helped prepare the path, chief among them

Martin Fowler. There are several microservice architecture patterns that, when

combined, help create a smooth process. Very briefly, these are:

• The Circuit Breaker pattern: Circuit Breakers abort code execution when

something unexpected happens; for example, when the network goes

down and two microservices cannot communicate with each other. “This

pattern forces us to think about what to do in that scenario, and there are

several libraries that implement this pattern in different languages,” said

Calavera.

http://www.thenewstack.io
https://martinfowler.com/
https://martinfowler.com/bliki/CircuitBreaker.html

33Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

FIG 2.3: Feature flags can divert a portion of traffic to a new microservice.

Source: https://martinfowler.com/articles/feature-toggles.html

Feature Flag Pattern

© 2018

1. Codepath for all users

2. Feature flag toggle

Codepath at runtime 3. Codepath for cohort A

4. Codepath for cohort B

• The Branch by Abstraction pattern: A technique for gradually

undertaking a large-scale change to a software system, Branch by

Abstraction allows you to release the system regularly while the change is

still in progress. “This helps introduce alternative logic to perform an

operation,” explained Calavera. “In this case, the alternative logic could be

to send a message to a microservice rather than using our current

application’s logic.” There are several libraries that implement this pattern

in different languages, including Go and Ruby.

• The Feature Flag pattern: Also known as feature toggles, these give the

ability to change the execution path within an application in real time. “We

can implement a flag that allows us to send some traffic to our new

microservice, but not all of it,” said Calavera. Again, multiple libraries exist

that implement this pattern in different languages.

In order to observe the behavior of the system during transition, Calavera

added, “all the previously mentioned libraries have some kind of support to

emit events, logs and metrics that we can feed to our favorite monitoring

system.”

http://www.thenewstack.io
https://martinfowler.com/bliki/BranchByAbstraction.html
https://martinfowler.com/bliki/BranchByAbstraction.html
https://github.com/calavera/go-scientist
https://github.com/calavera/scientist
https://martinfowler.com/articles/feature-toggles.html

34Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BUSINESS AND PROCESS DECISIONS FOR A MICROSERVICES TRANSITION

Best of all, the patterns can be combined to create a system that provides

significant control over the transition to a microservices architecture. For

example: By combining the branch-by-abstraction pattern with a circuit

breaker, it becomes possible to implement a change that allows directing

traffic to the new microservice. But if the circuit breaker gets tripped by an

unexpected error, the system falls back to the old application logic.

With the right business model and cultural fit, many companies have seen

great success moving away from a monolith to a microservices architecture.

The key is careful planning and assessment of an organization’s needs,

structure and talents. The path is made by walking.

http://www.thenewstack.io

35Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES 35

Cloud native isn’t limited to containers and

microservices orchestration. This was the main

conclusion the Cloud Native Computing Foundation

(CNCF) reached when it set out this year to re-define

the term “cloud native,” said Justin Garrison, co-author of the book

Cloud Native Infrastructure. Under the new definition, CNCF recognizes

that cloud native is not just a set of technologies to adopt, but that it

also reflects a change in an organization’s structure and processes.

“Technology is not the point. The point is business value and that may

be about speed of deployment and speed of shipping function,” Liz

Rice, technology evangelist at Aqua Security and co-chair of the CNCF’s

KubeCon + CloudNativeCon event, said.

This is why Garrison and Rice have lately seen even technologically

mature organizations deciding to rollback their microservices

architectures and return to a monolith. These organizations realized

that their own internal processes and teams just weren’t set up for

microservices. Does that mean they’re not running cloud native

applications? Not at all.

“It doesn’t matter if you own five little services or one big service, as

long as people can iterate quickly and gain velocity to solve business

problems,” Garrison said.

Garrison and Rice have learned a lot from other end users and

developers in the CNCF’s open source community. Organizations that

Redefining
Cloud Native to Focus on
Business Value

https://soundcloud.com/thenewstackmakers/redefining-cloud-native-to-focus-on-business-value
http://bit.ly/2DCTwne

36Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

REDEFINING CLOUD NATIVE TO FOCUS ON BUSINESS VALUE

get involved can avoid some of the pitfalls that those on the leading

edge of adoption have encountered. For example, many organizations

fall into the trap of using familiar tools to try to solve issues that are

specific to cloud native environments, Garrison said.

“Do I declare my pods in Terraform? You can. Should you? Maybe not,”

he said. “There’s different levels of abstractions where the tools just

don’t make sense anymore.”

Conversely, organizations may also misstep by misusing a new cloud

native tool, like a container image scanner that they end up rolling back

because it gives too many false positives, Rice said. They don’t know

that there is a good explanation for this and they stop scanning the

images altogether.

Instead, “they’re pretty much just relying on hearing about people

saying there’s this terrible meltdown/spectre/heartbleed/whatever, and

then checking whether that applies to them,” she said. “They don’t

notice when a real problem comes along.”

Garrison and Rice discuss the definition of cloud native, why some

organizations have decided to move away from microservices and back

to a monolith, and some of the approaches organizations are taking to

cloud native implementations. Listen on SoundCloud.

Liz Rice is a technology evangelist with container security specialists
Aqua Security, where she also works on container-related open
source projects including kube-bench and manifesto. This year she is

co-chair of the CNCF’s KubeCon + CloudNativeCon events taking place in
Copenhagen, Shanghai and Seattle.

Justin Garrison loves open source almost as much as he loves
community. He frequently shares his findings and tries to disseminate
knowledge through practical lessons and unique examples. He is an

active member in many communities and constantly questions the status quo.

http://www.thenewstack.io
https://soundcloud.com/thenewstackmakers/redefining-cloud-native-to-focus-on-business-value
http://twitter.com/lizrice
http://bit.ly/2j9HTY7
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/manifesto
http://bit.ly/2DCTwne
http://twitter.com/lizrice
https://twitter.com/rothgar?lang=en
https://twitter.com/rothgar?lang=en

37Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER #: CHAPTER TITLE GOES HERE, IF TOO LONG THEN...

SECTION 02

DEPLOYING
MICROSERVICES
Organizations must take an informed, methodical and phased approach to
make a successful microservices rollout. DevOps is the key.

http://www.thenewstack.io

38Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Contributors
Alex Handy is a 20-year veteran technology journalist who cut

his teeth covering the launch of the first iMac. His work has

appeared in Wired, the Atlanta Journal Constitution and the

Austin American-Statesman. He is also the founder and director

of the Museum of Art and Digital Entertainment (themade.org) a nonprofit

video game museum located in Oakland. He consults at VonGuard.net.

B. Cameron Gain’s obsession with computers began when he

hacked a Space Invaders console to play all day for 25 cents at

the local video arcade in the early 1980s. He then started writing

code for very elementary games on the family Commodore 64,

and programming in BASIC on the high school PC. He has since become a long-

time and steadfast Linux advocate and loves to write about IT and tech. His

byline has appeared in Wired, PC World, CIO, Technology Review, Popular

Science, and Automotive News.

Todd R. Weiss is a technology journalist who has been covering

enterprise IT since 2000. Most recently he was a senior writer

for eWEEK.com covering all things mobile. In addition to writing

for The New Stack, he has also written for CITEworld,

Computerworld, PCWorld, Linux.com and TechTarget.

http://www.thenewstack.io
https://thenewstack.io/author/alex-handy/
http://vonguard.net/
https://thenewstack.io/author/alex-handy/
https://twitter.com/brucegain
https://twitter.com/brucegain
https://twitter.com/TechManTalking
https://twitter.com/TechManTalking

39Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Migration Strategies for
Microservices

T
he road to microservices is long, winding, and contains many

off-ramps to confusing interchanges. The journey starts with the

organization’s business objective. People don’t get very far on the

microservices road of dreams when the objective is not clear. Business

objectives drive team development, workflows and the adoption of services to

define, build, run and maintain the microservices. Terms such as

“infrastructure consolidation” and “operation cost reductions” are important

only in their contextual meaning. An organization’s engineering team may

also be driven by the perception of marketing terminology upon the larger

business and enterprise. A search for a utopian city in the sky is often

unfruitful and empty. The city is gone and never really existed in the first

place. In reality, it’s very easy for engineers to find themselves wandering the

jungle of service discovery or the dark back alleys of QEMU.

Migrating corporate applications and services to the cloud is at the top of

many IT to-do lists, but the very idea covers a great deal of territory. Are the

migrating services modern, or legacy? How do they communicate with one

another? And perhaps most importantly, where is the data going to live? To

provide a starting point for exploration, it’s helpful to begin thinking in a

CHAPTER 03

http://www.thenewstack.io

40Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

DevOps mindset. Rather than be limited by an existing infrastructure or

application architecture, a DevOps engineer considers what may be possible to

achieve with a new set of tools and practices, and then finds a way to begin

iterating and evolving from the existing state.

Taking this DevOps approach, most microservices migrations are done in a

piecemeal fashion — starting with a monolith and breaking off one

manageable and well-defined service at a time. In this way, organizations can

maintain their legacy systems, some of which may never make the transition

to microservices, while simultaneously moving portions to the cloud — into

containers and microservices — where it makes the most sense.

This careful, reasoned and iterative approach also allows time for teams to

adapt to the new structure and processes that microservices require. They can

ensure the new services are migrated and functioning well before moving on

to the next service. And they can begin to adopt standard tools and

approaches for creating new services that work best for the organization’s

business goals and culture.

“ The most important things [in a microservices

migration] are to have some kind of standard set

of tools and technologies you use within your

organization and to have the person who made those
decisions know what they’re talking about. Then start

[small] and observe for six months, rather than start

with 50 services.”

— Ben Sigelman, CEO and co-founder, LightStep. 15

Hybrid Cloud is a Stepping Stone to
Microservices
To understand how an organization might begin breaking apart a legacy

application, let’s use a database migration as an example. For traditional and

http://www.thenewstack.io
https://twitter.com/el_bhs
https://lightstep.com/

41Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

legacy enterprise applications, monolithic databases are the norm. A single,

highly-tuned instance of Oracle, DB2 or even a small MySQL cluster handles

the longer-term storage of user and application data. Meanwhile, a multitude

of applications reach inside the database and get what they need done, perhaps

even using stored procedures.

The cloud breaks this pattern. Data storage is now distributed according to its

function for various workloads: Each service has its own data requirements

and thus its own database, and data queries may span multiple services, 16 so

that data is shared via an API. Stored procedures should be made into

microservices, databases must be highly scalable, and larger data stores that

contain relational information are relegated to jobs like “data lake” storage —

a vast repository of raw, unstructured data that’s off the beaten path of

second-to-second transactions. 17

Where once there was a monolith connected to another monolith,

microservices require the vivisection of those systems, and the splaying of

their innards upon the public cloud. The very act of deconstructing a monolith

can require intense infrastructure rearchitecture, and a large amount of actual

software development work; the sort no developer wants to handle.

There are ways around this problem, however. Many companies offer solutions

designed to help bring existing applications into a hybrid cloud model.

Companies such as Amazon, Google, Microsoft, Platform9, Portworx and

Rancher offer a way to bring the open source container orchestration platform

Kubernetes to bear upon such systems. Such products allow teams to designate

which workloads will run on the specified types of cloud infrastructure

according to set policies. This is one defining feature of cloud native,

microservices-based application architectures. Because the services are loosely

coupled, they can be deployed and managed separately according to

predefined, policy-driven resource allocations defined by a central IT team. 18

http://www.thenewstack.io
https://aws.amazon.com/
http://bit.ly/2x5VLZD
http://bit.ly/2h30eoP
https://platform9.com/
http://bit.ly/2D1EG8Y
https://rancher.com/

42Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

For some services, this halfway point favored by Platform9 and VMware is a

good stepping stone for monolithic applications that may be prohibitively

expensive to turn into microservices. This is the case for the majority of

companies — 57 percent of IT decision makers say their companies do a mix of

building new cloud native applications and refactoring existing applications,

according to a Cloud Foundry Foundation report. 19

There are a generation of companies that have architectures that predate the

client-server boom. Systems of record keep these businesses running. For the

teams managing these legacy systems, the idea is more about determining

how far back in the stack the systems can be pushed to make new space for

architectures that allow the business to be more relevant through new

application architectures. Offering the flexibility to manage virtual machines

for legacy applications, and containers for modern ones from the same console

means one layer of complexity for migration is at least abstracted away.

Infrastructure Considerations: A Stateless
Mindset
Yet, at the end of the day, the real goal is to provide a path for past and future

services to easily be integrated into a cloud architecture that fits the

organization or the business team leading the project.

Considerations for architecture development include the resources and all that

goes with a cloud native approach. It’s a matter of having the teams that will

have the knowledge and depth of experience to implement load-balancing

capabilities, service discovery, automated scaling and a host of other

capabilities. Large organizations with substantial resources and/or experience

may choose to build and troubleshoot their own infrastructure. Platform types

are numerous for those reviewing options for defining and building resources

for application and microservices development.

Defining microservices according to functionality and deployment patterns is

http://www.thenewstack.io
http://bit.ly/2p8YQno
http://bit.ly/2ESwPrk

43Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

Source: Janakiram MSV

Mapping Layers to Cloud Native Workloads

UI

API
Graph

Database

Object
Storage

NoSQL
Database

RDBMS

Scheduled

Jobs

Batch

Jobs

Parallel

Jobs

Event-Driven

Code

Legacy
SCM

Legacy
CRM

Legacy
LOB App

Legacy
ERP

Scalable Durable Parallelizable Event Driven Legacy

Stateless Stateful Batch Processing Serverless
Traditional/
Monolithic

Workload
Type

Layer

© 2018

FIG 3.1: Each layer of a cloud native application runs specific microservices designed
to perform a fine-grained task.

an emerging best practice for cloud native application design and a trend that

we are continuing to follow. Cloud native applications are composed of various

logical layers, grouped according to workload. Each layer runs specific

microservices designed to perform a fine-grained task. Some of these

microservices are stateless, while others are stateful and durable. Certain

parts of the application may run as batch processes. Code snippets may be

deployed as functions that respond to events and alerts. See our recent ebook

on CI/CD with Kubernetes for a more in-depth description of each layer of a

cloud native application.

As cloud native computing advances, resources are increasingly available for

compute, storage and networking. It is now just a matter of programming the

internet and what is increasingly described as physical computing. The world is

getting programmed. Resource-driven automation is a natural outcome for

http://www.thenewstack.io
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/

44Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

developers to make increasingly more of the services and platforms available.

Application architectures, in turn, have adapted to available resources, which

have changed how services are built, run and maintained. Cloud-based

applications are best without state. Building an application based on cloud

native microservices then becomes a matter of architecting application

workloads to maximize statelessness.

Stateful applications simply don’t scale as easily as stateless ones. If memory

on one machine is filled with important information, and the machine goes

down, that state is lost forever. Complex memory mirroring schemes aren’t

appropriate for highly scalable applications, either, as they chew up bandwidth

and slow down systems.

“The problem is, microservices running in containers have a much greater

need for interservice communications than traditional architectures do, and

this can introduce problems ranging from poor performance, owing to higher

latency, to application-level failures, owing to the loss of data or state. This

potential pitfall plagues, to a greater or lesser extent, each of the traditional

architectures, which all struggle to scale capacity and/or throughput to handle

the relentless growth in the volume and velocity of data,” writes Paul Curtis, a

principal solutions engineer at MapR. 20

The abstraction of state makes for the easiest starting point for migrating to

microservices. Whatever that state may be, it must first be pulled out into the

open and handled in another fashion. In a way, this model mirrors that of

functional programming: rather than setting a variable to a value, a value is

passed through a function, yielding a unique and new result on the other side.

At no point do we overwrite the original variable’s value.

So, too, is it with stateless microservices: Instead of setting variables

internally to represent externally-sourced data, we simply pass that data

through the application, as though it were a manufacturing process. The

http://www.thenewstack.io
https://twitter.com/paul_mapr
https://mapr.com/

45Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

© 2018

Microservices Maturity Model

Source: “Spring 5.0 Microservices,” 2nd Edition” by Rajesh R V (O’Reilly)

Traditional Basic AdvancedIntermediate

Service Oriented

Applications
Application Monolithic

Service Oriented

Integration
API Centric

Polyglot, DBaaSDatabase One Size Fit All

Enterprise DB

Enterprise DB +

No SQLs and Light

Databases

Matured Data

Lake / Near

Realtime Analytics

CloudInfrastructure Physical

Machines
Virtualization Containers

APMsMonitoring Infrastructure

Application

& Infrastructure

Monitoring

APM & Central

Log Management

CI & CDProcess Waterfall Agile and CI DevOps

FIG 3.2: An organization reaches maturity with microservices when it adopts a
DevOps process along with the technology.

application outputs a value based on the input, but that input should still be

out there somewhere: on a message queue, in a streaming data server like

Flink or Kafka, or even in a caching layer somewhere hosted out on the edge

of the network.

This is, perhaps, one of the reasons streaming platforms have been growing in

popularity recently: They allow for the abstraction of state from all

applications, while still enabling a fast user experience on the other side of the

queue. Such streaming platforms allow any containerized microservice to

publish data and/or messages in a stream, as well as receive or subscribe to

any stream. Scaling an application to handle higher volumes of data is simply a

matter of starting up additional containers for whatever microservices are

creating a bottleneck. 21

DevOps teams may still take snapshots of the system, capturing data and

development states at a specified point in time, to reuse as blocks of state. By

http://www.thenewstack.io
https://flink.apache.org/
https://kafka.apache.org/

46Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

incorporating these snapshots into a feedback cycle of monitoring and

continuous improvement, they can provide the basis for rollback capabilities

and a trail of breadcrumbs for later analysis. This method is part of a larger

philosophy gaining momentum that we hear described as GitOps, an iteration

of DevOps, wherein Git is a single source of truth for the whole system.

Case Study: Gilt’s Microservices Migration
The path to microservices is ultimately about services and the resources

needed to run an application. That’s evident at Gilt, an ecommerce company

that is on a path originally developed by Emerson Loureiro, now a software

developer at Amazon Web Services (AWS).

The year 2007 seems so long ago, but it was the time of Ruby, a frontend

delight for geeks who lived by its libraries and the development of specific,

often quite creative, pieces of software. Gilt had a big piece of Ruby monolithic

software running its site. They ultimately dismantled the monolith and

created a series of Java services, broken into components running on Scala

across AWS infrastructure.

In 2016, Loureiro took the stage at AWS re:Invent: “We did realize that a lot of

those Java services, they became monoliths themselves. We broke those further

down into, now, real microservices, now being written in Scala. We also wrote

a ton of new services as well. We broke down our frontend apps into lots of

smaller components,” Loureiro said.

Today, Gilt is running on a microservices architecture, added Loureiro. Along

the way, that microservices journey also yielded a move to Amazon’s cloud.

When the cloud move was made, the team packaged up legacy applications

into virtual machines. Once all of Gilt’s applications were packaged up, they

were then divided among five departments inside Gilt’s IT team, each with its

own Amazon account. Each team was responsible for running its specific

services, which could be migrated over quickly, as they’d already been

http://www.thenewstack.io
https://www.linkedin.com/in/emersonloureiro/

47Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

packaged up and readied to go by a central IT force.

Best Practices for a Microservices Migration
The previous chapter discussed how an application architecture can be

workflow-oriented and how it can be broken into services accordingly. It’s time

to look at how teams work together and manage projects over long periods of

time.

The Gilt team organized its microservices around specific business initiatives.

This meant each business group was responsible for running and

maintaining its specific set of microservices. This also meant that the lines

of control for, say, the accounts team, were kept inside that team. No outside

developers or IT staff members were needed to fix internal accounts

problems, speeding up response times for issues, and enabling the team to

increase its innovative velocity.

This could also require some overall reorganization of the team, as demands

increase for each group running microservices. Will the organization need

more resources to maintain service levels? This has to be a first-order

question. Each group will need its own frontend, backend and networking

developers, though the numbers of each will likely vary from team to team.

Teams should be small enough to manage independently, usually between

three and five people.

However, each team is not exclusively consuming its own services. The very

idea of microservices is to enable everyone in the enterprise to access the

business functionality they need at any time. Thus, while individual teams

control their own applications and services, they do need to interact with one

another in order to consume and offer those services outside.

Some best practices for discovery that help with service sharing among teams

were shared as part of Loureiro’s discussion with Derek Chiles, now senior

http://www.thenewstack.io
https://www.linkedin.com/in/derekchiles/

48Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

manager of Amazon Web Services’ worldwide tech leader team:

1. Use conventional naming schemes to identify services. DNS makes this a

bit simpler as it provides a straightforward way to make discovery sane.

Dynamic discovery is another method of handling this problem, but it does

add another layer of complexity to the architecture. Systems like etcd,

HashiCorp’s Consul, and Eureka, all allow service discovery to be

performed dynamically within the architecture. This does add another

service and a point of failure to your architecture, but also offers a

centralized place to view deployment status and control available instances

in a complex system where DNS doesn’t cut it. 22

2. Adopt API management. While companies like Apigee (now part of

Google), MuleSoft and Oracle will all sell you API gateways, there’s a lot

more complexity and nuance in the space than simply putting a gateway in

place. Some services will inevitably be earning money based on usage;

however, API gateways are a great place to implement billing and usage

tracking through complex metrics captured by these commercial systems.

SLA enforcement is naturally a portion of that as well.

Yet for most teams, starting out with a simpler approach to API

management may be the best way to go. The first thing on the list to

manage is traffic metering and throttling. API management, at its core, is

load balancing with more complex rules. To this end, teams can use open

source solutions, such as NGINX, to handle the most basic of API

management functionality.

When the migration is further along, monetization of APIs through

commercial gateways may actually be needed, but many teams find that

existing solutions are up to the task at a far lower cost point. The general rule

of thumb, we’ve seen, has been that if the API directly generates revenue

through usage, that’s the point where a commercial solution should enter the

http://www.thenewstack.io
https://coreos.com/etcd/
https://www.hashicorp.com/
https://www.consul.io/
https://github.com/Netflix/eureka
https://apigee.com/api-management/
https://www.mulesoft.com/
https://www.oracle.com/middleware/identity-management/api-gateway/index.html
https://www.nginx.com/

49Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MIGRATION STRATEGIES FOR MICROSERVICES

picture. For internal and external API traffic that is not generating business

revenues, noncommercial solutions can typically handle the problems.

Gateways can get pricey very quickly, as many companies charge based on

traffic, so they should be a last resort.

Conclusion
The real draw for microservices is increasing enterprise software development

velocity, while lowering costs and reducing complexity. Those are very tall

orders on their own, so getting all three benefits while also migrating legacy

applications to the cloud can be the sort of “boil the ocean” project that chokes

an IT department.

In the end, each of the benefits can be gained individually along the way; they

don’t have to all come at once. Just as services don’t have to be migrated at

once. Microservices are loosely coupled and self-contained with completely

static code. If done right, a microservice can be optimized and left alone

indefinitely, never needing updates or maintenance. That’s far easier said than

done, however.

Microservices are defined by workflows, and the services used based upon

business objectives. The root business model is what matters — less important

is what gets built, as long as it can be developed incrementally and run with no

or little management.

Microservices thrive when teams employ best practices, find ways to reflect

upon their work based upon analytics, and work under the leadership of full-

stack engineers. When teams are led by experienced DevOps professionals, the

layers of the stack can be utilized as individual services. Adoption can be part

of an overall focus, achieved by onboarding teams with recommendations,

documentation and best practices.

http://www.thenewstack.io

50Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER 04

A Case Study of
Questback’s Phased
Approach to a
Microservices Transition

M
idway through the transformation of its 18-year-old monolithic

application architecture, Questback is finishing a year-long

containerization program and is preparing to begin an

accompanying microservices deployment. The online digital survey and

market research company is rearchitecting its platform to modernize it, make

it easier to add innovations for customers and make it more cost-efficient.

The transition to containers and microservices is a strategy that is gaining

popularity among a growing number of enterprises, according to several IT

analysts. And a phased approach like Questback’s is a good way to make this

shift, they said. As the company works toward its modernization goals, it is

continuing to run and maintain its existing systems to make the

transformation as seamless as possible.

“We are living in a parallel world,” Questback CEO Frank Møllerop said. “We

are working with the old stuff as we are preparing the new stuff. All of this

could have been done quicker, but we decided to take it a little bit slow at our

end to be sure we were not impacting our business-as-usual too much.”

http://www.thenewstack.io
https://www.questback.com/

51Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF QUESTBACK’S PHASED APPROACH TO A MICROSERVICES ...

A Two-Phase Approach
Starting over from scratch was out of the question, because too much money

had already been invested in the existing system and because it still did its job

in most ways, Møllerop said.

“We went into the cloud in 2000 when it was called hosting,” he said, long

before the proliferation and success of public clouds. “It was the cradle of our

technology.”

The problem was that the old architecture needed modernization and other

improvements, as the company looked at offering its products and services

through public clouds. In the past, Questback had only offered the services

through private clouds.

These needs became more evident, said Møllerop, as the public cloud started to

gain major traction and speed in the last six years, with AWS, Google Cloud

and Microsoft Azure allowing businesses to easily deploy applications that

could be used by customers.

After researching its options, Questback’s IT and leadership teams reinvigo-

rated the company’s IT architecture through the addition of containers and

microservices that the company developed while maintaining its effective and

long-proven IT system. The initial plans called for a two-phase approach: first

for containerization, and then microservices, which would integrate with its

existing monolithic architecture.

“That’s the whole point,” said Møllerop. “We don’t want to replace it because

our stuff works, and it can run forever.”

Containerization Completed, On to the
Microservices
By April of 2018, the containerization deployment was finishing up, helped

http://www.thenewstack.io
https://aws.amazon.com/
http://bit.ly/2x5VLZD
http://bit.ly/2h30eoP

52Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF QUESTBACK’S PHASED APPROACH TO A MICROSERVICES ...

along since the late summer of 2017 by a detailed project plan which included

the creation of an internal cloud enablement team, governance procedures and

help from IT staffers and a third-party technology partner. Testing is now

continuing with the containerization efforts. The containerization phase,

which uses Docker, Kubernetes and Kublr management components, finished

on time and on budget.

The second phase, the introduction of microservices, was slated to begin in

April 2018, and will include decisions about which microservices technologies

to use and which individual service components the company wants to offer up

to customers via microservices, said Møllerop.

The lure of microservices is that they will help simplify the complex problems

of trying to make changes in large, unwieldy monolithic systems, he said. With

some 200 types of technologies and standards included in its existing IT

architecture, as well as more than a million lines of code, making changes

creates a lot of technical issues, because each modification affects other

systems. “It takes a long time before you’re able to introduce new innovations

to the market,” Møllerop continued, using such a procedure.

By sectioning off services and processes within the monolithic system using

containers and microservices, select customer features will operate

individually and be self-sufficient and self-contained, allowing them to be

used by customers through public clouds as needed, he said. By using

microservices, Questback won’t have to worry about problems arising through

changes to its existing architecture, as its modernization and efficiency

programs continue. Changes will only happen inside the subsystems of the

containers.

“With containerization, we can move things around. It’s much easier and you

can control it and have a complete overview,” he said. “It enhances your

mobility.”

http://www.thenewstack.io
https://kublr.com/

53Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF QUESTBACK’S PHASED APPROACH TO A MICROSERVICES ...

Customers will be able to access the services through Questback’s APIs,

allowing the company to earn revenue while simplifying innovation and

service delivery, and giving it new go-to-market models.

“This will open up a new commercial model, so we can charge for the use of

our services differently than we would have done in the monolithic setup

because we can, for instance, charge $0.01 per API call,” said Møllerop.

At the same time, the technology additions can be done even as the existing

system continues to support the company’s everyday business efforts.

Drawing a Microservices Road Map
To prepare for the microservices phase, Questback will rely on its 100-member

IT engineering team, as well as a third party, EastBanc Technologies, which

provides its Kublr container management system. Kublr is part of a growing

field of Kubernetes service providers, including Giant Swarm, Heptio, Pivotal,

Platform9, Rancher, Red Hat OpenShift, StackPointCloud and Weaveworks, that

set up and configure Kubernetes for enterprise users. 23

For the microservices strategy, the plans are in the very early days, he said. “We

need to decide, first, which of our individual service components we will make

available. It doesn’t make any sense to do a huge microservice architecture

undertaking if we are not planning on having that element of the service made

available. We need to document the APIs well so customers can utilize them and

understand how each of the service components will work individually.”

There have been a few challenges with the process so far, said Møllerop,

including resistance to change from some employees and mapping out how the

new technologies can be used to fuel the company’s future goals. In addition,

as Europe’s General Data Protection Regulation (GDPR) privacy rules take

effect, Questback must ensure that the changes comply with those stricter

rules, he said.

http://www.thenewstack.io
https://giantswarm.io/
https://heptio.com/
http://bit.ly/2sia1Ok
https://platform9.com/
https://rancher.com/
http://red.ht/2uJGuQo
https://stackpoint.io/
https://www.weave.works/

54Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF QUESTBACK’S PHASED APPROACH TO A MICROSERVICES ...

“It’s been a very thoughtful and well-orchestrated process,” Møllerop said of

the containerization and microservices projects so far. “It’s not been easy. It’s

been a lot of hard work and lots of late hours and some frustration as you go

along. But we are now on the home stretch, so it looks very good.”

One key to making it all work was bringing in Kublr and EastBanc to assist

with the work and to “give us a new perspective into how we should approach

this technology-wise,” he said. “That’s what we did and that was one of the

key reasons we were able to finish on time and on budget.”

Analysts Weigh In
Questback’s decision to introduce containers and microservices into its

existing monolithic architecture is a strategy being told by other companies as

well, said Charles King, principal IT analyst with Pund-IT.

“The migration versus starting-from-scratch issue offers a good point to

compare microservices development technologies and procedures with what

you already have in place,” King said. “By doing it this way, it also can allow

tried and true expectations for how the process proceeds and how the final

application performs. Starting from scratch seems to be more common in

organizations that are already on the road with application modernization.”

Questback’s move to recognize employee resistance to change amid the

projects is wise to keep the efforts on-track, while maintaining worker job

satisfaction, King said. The company’s decision to bring in a trusted third-

party vendor to help with the work is also a smart move, he said. It is also

showing a fresh approach to adapting its existing IT infrastructure to work

with microservices efforts and projects.

“You can point to the popularity and continuing rapid growth of core

technologies, including Docker, as a proof point for how widespread it’s

becoming,” said King.

http://www.thenewstack.io

55Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF QUESTBACK’S PHASED APPROACH TO A MICROSERVICES ...

Questback’s approach makes sense, said Dan Olds of Gabriel Consulting Group.

Ultimately, “the best way to get to a microservice architecture is to first build

the application as a monolith and then break it apart into microservices.”

At the same time, other companies which are already using a variety of

internal technologies and architectures potentially could have trouble

migrating to microservices in bulk, he said, based on his discussions in the

marketplace.

“Many of the companies that I’m aware of are starting their microservice

architectures on new projects and leaving the older stuff behind until they get

more experience and better tools for conversion,” said Olds. “This is an

evolutionary process.”

http://www.thenewstack.io

56Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER 05

Microservices Security
Strategy

M
icroservices can serve as an elegant way to break the shackles of

monolithic architectures when building and deploying applications.

But the concept is not new. Microservices have arisen in different

architectural styles over the past 20 years. Critics and proponents alike are

skeptical of any term that is meant to describe this architectural style in its

whole, as it can’t encapsulate how much different it is than web services. At

first glance it may seem absurd to make the comparison, but the only essential

differences are in new abstractions to make the compute, networking and

storage a lot easier to use.

Technologists who created microservices in 2007 had to build their own

proxies, service meshes and orchestrators. They relied on open APIs to

connect services. That knowledge grew in scope over the past ten years and

the ecosystem has evolved to the point at which these components are readily

available as open source and commercial offerings. Container security

technologies are now following the same trajectory to become part of the

overall developer experience — joining the list of abstractions that are now

increasingly programmable, automated and commercially available.

While this abstraction of the security layer has many benefits to the overall

http://www.thenewstack.io

57Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES SECURITY STRATEGY

security posture of the organizations deploying cloud native microservices, it

also poses new risks and possible vulnerabilities. With their individual APIs,

microservices can be reconfigured and updated separately, without

interrupting an application that might rely on many microservices to run.

However, microservices also come with many separate APIs and ports per

application, thus exponentially increasing the attack surface by presenting

numerous doors for intruders to try to access within an application. While

their isolated and standalone structure within applications makes them easier

to defend, microservices bring unique security challenges. The attack surface

widens further for Kubernetes users because of the orchestrator’s

comprehensive reach in the container runtime environment. 24

As a result, organizations have begun to take take a “shift-left” approach that

rests security practices deeper into the development process, so that security

teams are more involved in engineering and vice versa — an emerging DevOps

practice appropriately named DevSecOps. The shift-left approach, which gives

developers more responsibility for application security, itself has two sides:

Most developers do not fully understand how applications are connected across

a network mesh. What they are looking for often are open end-points — APIs

to interconnect applications. That in itself creates a security gap and an

opportunity to isolate issues. At the same time, it allows teams to detect

anomalies faster through automated container image scanning — going

further left by baking security into the code itself.

“I often use the analogy: If you were writing “War and Peace,” would you

rather edit and course correct as you write, or pile all the corrections on at the

end?” writes Mike D. Kail, CTO of Everest, on The New Stack. 25 “Security has

traditionally been viewed as a barrier to velocity and innovation. But by

integrating it seamlessly and continuously into the software development life

cycle, it can actually accelerate innovation.”

The security advantages and disadvantages that come with microservices are

http://www.thenewstack.io

58Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES SECURITY STRATEGY

still emerging, as are the tools and best practices for securing them. A

microservices architecture requires a new approach to security — network

security, in particular — and new tools that were built for this purpose.

Though services are so closely connected, there needs to be a way to ensure

latencies, failed instances and security threats are contained to each service, so

that even if one service is taken down, the others perform their function until

the affected service is reinstated. 26

Organizational changes that put more responsibility in developers’ hands must

be combined with emerging best practices for securing microservices-based

applications. Companies are thinking more deeply about developing separate

pipelines for various workload types. Other emerging best practices include:

• Programming languages for maintaining compliance.

• Container image scanning.

• Policy-based network security.

• Canary testing technologies.

• Threat detection at runtime.

• Log analysis.

Containers Secure Microservices
Microservices and container security are sometimes incorrectly referred to

interchangeably, even though they are two different things. This may be due,

in part, to how most enterprises run microservices on containers. According to

an Enterprise Management Associates study, for example, 63 percent of

enterprises surveyed run microservices on containers, while an additional 30

percent are planning to do so in the next 12 months. 27 However, microservices

can just as easily run on a virtual server as in a container.

http://www.thenewstack.io
http://www.enterprisemanagement.com/research/asset.php/3575/Ten-Priorities-for-Container-Management-and-DevOps-in-Production-and-at-Scale-in-2018---EMA-Top-3-Report-and-Decision-Guide-for-Enterprise

59Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES SECURITY STRATEGY

The trustworthiness of the source for the container that serves as the base for

deployment, and the level of access the container has to the host operating

system are two distinct container-specific security concerns. 28 The focus

centers on the maintenance of the container to reduce the attack surface of the

application and its corresponding microservices. Emphasis is on keeping

container images small, short-lived and well-scanned. Security protocols

require managing the containers to prevent infected images from spreading.

Such protocols help protect against potential vulnerabilities of microservices

within containers.

Container images are the key source of vulnerabilities. Publicly shared images

are frequently infected and thus unsafe for production environments, writes

Twain Taylor for Twistlock. 29 Image scanning features of container registries

make it easy to scan all container images downloaded. They run checks for the

known vulnerabilities and follow the CIS Docker Security Benchmark.

Importantly, when running containers, they need to be run as unprivileged,

non-root containers, according to Twistlock. This prevents vulnerabilities from

spreading to other containers and the host. Additionally, steps need to be taken

to keep container images as small as possible. This reduces the potential

surface area for an attack. Ensuring container lifespans are short — not more

than a week — can also keep your system more dynamic and less prone to

vulnerabilities. 30

A container has an architectural advantage over the traditional application

development platforms before it. Container technologies are isolated from the

operating system, in contrast to a hypervisor-centric approach such as

Platform as a Service (PaaS), which is limited by performance and capacity.

They are architected for another age, when updates were events of importance

that required pre-scheduling on a calendar.

In comparison, container architectures are essentially platforms for developing

http://www.thenewstack.io
http://bit.ly/2sOzS1A

60Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES SECURITY STRATEGY

microservices. They are declarative, predictable and lightweight, compared to

virtual machines that historically would require configuration mechanisms to

identify the software within the machine.

Containers operating in a service mesh are also far easier to secure. The mesh

connects the endpoints of the container network infrastructure which operates

on policy frameworks. The mesh connects the platform monitoring with the

security infrastructure. Monitoring is more granular and can be managed

declaratively with little human involvement.

Containers create a machine-learning environment almost by default. They’re

based on the ongoing learning of the homegrown data loads the system is

processing. By using containers to hold the data and apply it to to predictive

algorithms, network security policies may evolve faster and be used with

machine learning to manage updates declaratively.

The ability to measure and compare observed network behavior to a predictive

model for a microservice is a key advantage that containerized architectures

provide, said Twistlock CTO John Morello. “While it’s theoretically possible to

create a reference model for traditional, non-containerized services, this is

almost impossible to do at scale in practice,” Morello said. “Few developers

truly understand all the network dependencies in a complex app and fewer still

have the time to manually codify these interactions into external systems and

maintain those definitions over time as the app evolves. The fact that

containers make machine learning about these network flows practical and

effective is a fundamental security advantage that enables more tightly

defined, application-tailored network policies to be used at scale.”

The stateless qualities that can add agility to how microservices are deployed

and administered can also be applied to microservices security in container

environments, said Suzy Visvanathan, director of product management, for

MapR. “Microservices need to be lightweight and execute in a flexible, agile

http://www.thenewstack.io
https://www.linkedin.com/in/john-morello/
https://www.linkedin.com/in/suzyvisvanathan/
https://mapr.com/

61Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES SECURITY STRATEGY

manner depending on business events and the required context. Microservices

also need the ability to share data to drive the operations and analytics

required for the specific use case,” said Visvanathan. “The most efficient and

secure way to support this is through an underlying data fabric that can

support the required data access, while providing the robust security and

access controls.”

Containerizing microservices and managing them through Kubernetes is one

such way of providing this, Visvanathan said. “Each microservice is

guaranteed secure access, and regardless of where that microservice executes,

the access method and security is consistent.”

Containers can serve as an excellent security perimeter for microservices,

thanks to their design. “Containers enable you to apply security to each indi-

vidual service, making them ideal for microservices. And no matter the appli-

cation, putting it in a container provides an added layer of security,” said David

Lawrence, a senior software engineer at Docker. “We see a common trend

across enterprises is to containerize legacy applications, and as a result, gain

the immediate benefit of hardened security, in addition to cost-efficiencies and

portability to hybrid cloud environments.” Wrapping and delivering microser-

vices in containers is an approach for developing a secured environment, but

many more steps are needed to guarantee a secure application.

The Microservices Security Checklist
An organization must adjust its own internal security practices for a new,

cloud native approach. In its Application Container Security Guide, the National

Institute of Standards and Technology analyzes the unique risks posed by

containerized applications and advises organizations how to secure them.

Their first recommendation: “Tailor the organization’s operational culture and

technical processes to support the new way of developing, running, and

supporting applications made possible by containers.”

http://www.thenewstack.io
https://thenewstack.io/kubernetes-deployment-security-patterns-ebook-now-available/
https://www.linkedin.com/in/endophage/
https://www.linkedin.com/in/endophage/
https://www.docker.com/
https://www.nist.gov/publications/application-container-security-guide

62Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES SECURITY STRATEGY

This guidance implies “that modern data centers require a major shift in

enterprise strategy and means of securing them, in order to keep pace with the

new methodologies of developing and running applications,” writes Nitzan Niv,

a system architect at Alcide. 31

With a DevOps culture and processes in place, organizations are in a better

position to take advantage of the new processes and tooling around securing

microservices applications.

Considering how the underlying configurations of applications running on

microservices are very different than those of monolithic architectures,

standard cybersecurity practices will be inadequate. However, it may be a while

before security practices catch up to microservices’ deployment on an

industry-wide scale. Cloud deployments may serve as an example of why this

will likely be the case.

According to analyst firm McKinsey, a full 78 percent of more than 100 firms

recently surveyed are not reconfiguring their security tools when migrating to

the cloud. 32 Similarly, most security standards in place among the enterprises

listed in the survey are unsustainable for cloud networks. While data about

microservices projects was not provided in the report, it can thus be inferred

that at least a relative percentage of firms are not revamping their

on-premises security practices and protocols for microservices.

“Where a traditionally monolithic application can be delivered in a large

container model, moving an application from a traditional monolithic

architecture to microservices requires complete refactoring,” said Carson

Sweet, CTO of CloudPassage.

Microservices thus involve a major change in how applications are delivered,

deployed and protected, Rani Osnat, vice president, product marketing, for

Aqua Security, said. Key security considerations include:

http://www.thenewstack.io
https://www.linkedin.com/in/nitzan-niv-306642b/
http://bit.ly/2zazqgJ
https://www.linkedin.com/in/carsonsweet/
https://www.linkedin.com/in/carsonsweet/
https://www.cloudpassage.com/
https://www.linkedin.com/in/raniosnat/
http://bit.ly/2j9HTY7

63Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES SECURITY STRATEGY

• Dynamic code delivery and updates: By automating testing, code must be

vetted to ensure that it represents an acceptable risk in terms of

vulnerabilities, malware, hard-coded secrets, etc. “The old way of gating a

version, stopping to test it for an extended time, etc. will simply not fly,”

said Osnat.

• Tooling: This is especially critical when deploying microservices

applications with a new set of management tools, such as Kubernetes.

“There’s a knowledge gap around these tools that leads to mistakes around

authentication, authorization, hardening and other best practices,” said

Osnat. “We’re talking about basic hygiene here.”

• Abstraction from a host environment: Since existing endpoint and server

security tools don’t have the required access and granularity to adequately

monitor microservices, visibility and control become issues. “Since

microservices can be scaled up and down rapidly, and across different

types of infrastructures, it’s a challenge to track them,” Osnat said. “An

infrastructure-based approach is doomed to fail, and you have to find a

way to secure microservices in advance of their deployment.”

• Networking: Microservices represent the best of both worlds when seeking

to secure networking vulnerabilities, since microservices essentially

expose networking deeper inside the application. “The opportunity is that

you can secure the application at the microservice level, which would

prevent an attack from spreading much sooner [in a much smaller radius]

than was ever possible before,” Osnat said. “On the other hand,

microservices networking is more complex and dynamic, once again

rendering traditional network security tools inadequate.”

One might assume overzealous security practices can create bottlenecks, as the

sharing of microservices among applications is needlessly blocked. However,

microservices can never be too tight, especially as compliance regulations and

http://www.thenewstack.io

64Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES SECURITY STRATEGY

governmental security mandates become stricter, according to Dave Nielsen,

head of ecosystem programs at Redis Labs. One example of why this is the case

is GDPR, which imposes a much stricter data sharing limitation within the

European Union trading block.

Microservices security, in many ways, represents many unique and especially

difficult challenges. DevOps and security teams, for example, must be especially

vigilant against unauthenticated access to data and insecure client-side

connections leading to man-in-the-middle leakage and attacks, Nielsen said.

“With that said, tight security during the dev/test phase seems like overkill,”

Nielsen said. “But in production, security can never be tight enough.”

As in all cloud native technologies, DevOps practices are key to success. By

taking a shift-left approach and addressing security throughout the entire

application life cycle —providing feedback loops between security teams,

developers and operations — organizations will more easily adapt to the new

tools and protocols required to keep security tight for a microservices

application in production.

http://www.thenewstack.io
https://www.linkedin.com/in/dnielsen/
https://redislabs.com/

65Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER 06

Deploying Microservices

T
here’s a lot to do when deploying microservices into an enterprise

software environment. Right from the start there are decisions to

make which trickle down from the full data center considerations to

the operating systems, to the container management and orchestration layer,

and finally to the application itself. Organizations must also weigh their

commitments to cloud services that provide tools to help customers build out

microservices on proprietary architecture. These services are convenient, but

come with a price and may even constrain investments in open source projects

that may be longer sustaining. Organizations that balance convenience with

long-term health may best be positioned to consider the different approaches

to microservices, using open source tools to increase speed and agility.

Hidden within this decision-making strata are nooks and crannies where

singular choices can make lasting impacts on performance, application velocity

and the actual business value generated. For these reasons, it’s worth taking

the time to make all of these decisions properly, and from a position where

teams are well informed of the constraints and possibilities.

Starting with the infrastructure, the actual location of these deployments is,

perhaps, the largest influencer of the other decisions in the stack. Deploying

http://www.thenewstack.io

66Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEPLOYING MICROSERVICES

© 2018

How to Move From a Monolith to Microservices

Source: https://aws.amazon.com/getting-started/container-microservices-tutorial/module-four/

3. Configure Target Groups

4. Switch Traffic & Shut Down Monolith

LOAD BALANCER TARGET GROUP DEPLOYED MONOLITH

2. Start Microservices
LOAD BALANCER TARGET GROUP DEPLOYED MONOLITH

LOAD BALANCER TARGET GROUPS MICROSERVICES

1. Current / Deployed Monolith
LOAD BALANCER TARGET GROUP DEPLOYED MONOLITH

ReviewsAccountsListings

ReviewsAccountsListings

Reviews

Accounts

Listings

ReviewsAccountsListings
/api

/api/listings /api/accounts /api/reviews

/api/listings

/api/accounts

/api/reviews

ReviewsAccountsListings
/api

ReviewsAccountsListings
/api

ReviewsAccountsListings
/api

MICROSERVICES

MICROSERVICES

TARGET GROUPS

FIG 6.1: The load balancer deployment model allows for traffic to be shifted to indi-
vidual groups of servers in order to safely transition traffic away from the monolith.

http://www.thenewstack.io

67Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEPLOYING MICROSERVICES

services into Amazon Web Services, Google Cloud or Microsoft Azure each

comes with its own deployment choices. For example, Amazon relies on its

application load balancer service to bear the weight of the deployment and

safely transition traffic away from the monolith. 33 NGINX also identifies

multiple deployment patterns for microservices, including multiple service

instances per host, service instance per virtual machine, service instance per

container and serverless. 34 The load balancer model is a common pattern,

repeated in private clouds as well. This model allows for traffic to be shifted to

individual groups of servers, thus providing for those groups to be updated on

their own, in order. As one group is updated, it takes the place of another that

has not, and in this fashion, a rollout is performed.

The rollout deployment models now used are also compatible with the

approach to creating subdivided microservices from monolithic applications.

For the purposes of decomposition, a distributed architecture allows for better

performance when making the transitions to a preferred platform to architect,

deploy and manage application components with microservices as the context

for further development. By provisioning microservices into groups, they can

be brought online as the monolith is removed from the equation, ensuring a

smooth transition, and preventing a gap in the data that flows through

enterprise services. Zero downtime for upgrades and updates comes when a

path is followed encompassing an iterative, DevOps approach.

Deconstructing a monolithic application also comes with benefits for the

business as a whole. Aside from increasing agility, an individual microservice

can be modified without worrying about redeploying an entire monolith. This

pattern also allows for businesses to break out their most essential and

difficult application aspects to be replaced with best-in-class products.

Many monolithic applications already include things like user content storage,

payment processing or voice over internet protocol (VOIP). Allowing a team to

break these aspects out and turn them into a line item on their budgets —

http://www.thenewstack.io
https://www.nginx.com/blog/deploying-microservices/

68

DEPLOYING MICROSERVICES

Once per week

to once per month*

Once per week

to once per month*

© 2018

Benefits of DevOps to IT Performance

Source: “State of DevOps Report," Puppet and DORA, 2017

Low
IT Performers
Starting DevOps

Medium
IT Performers
Growing DevOps

High
IT Performers
Mature DevOps

Once per week

to once per month *Deployment frequency
Once per week

to once per month

On demand

(multiple per day)

Lead time for change
Code commit to running in production

One week

to one month *

One week

to one month
Less than one hour

Mean time to recover (MTTR)
Unplanned outtage, service imparement

One day

to one week
Less than one day Less than one hour

Change failure rate
Degraded service or required fixes

31-45% 0-15% 0-15%

Low performers are lower on average

at a statistically significant level, but have

the same median as medium performers.

*

FIG 6.2: Puppet and DORA’s latest State of DevOps Report shows the benefits of
DevOps to IT performance are related to deployment frequency, lead time for chang-
es, MTTR and rate of change failure.

thanks to Filestack, Stripe or Twilio — means more engineering resources can

be focused on the actual differentiators for the business application.

Sameer Kamat, CEO of Filestack, said that one of the most important factors of

running microservices is maintaining uptime. His company offers APIs to

intake and manage user-generated content. “Uptime is a big factor for us.

That’s where reliability, redundancy and load balancing is a big factor for us.

We use autoscaling because some of our biggest clients have seasonality in

their business. We have to scale up and map to that seasonality. ... You cannot

rely on hope. Your infrastructure has to be designed in a way that handles

scalability in an automated fashion.”

Microservices provide what all API services offer. They enable the agility and

efficiencies afforded by the loosely coupled nature of these lightweight

services. With fewer moving parts, and dependencies tied to API interfaces

http://www.thenewstack.io
https://www.filestack.com/
https://stripe.com/
https://www.twilio.com/
https://www.linkedin.com/in/sameerkamat/
https://www.filestack.com/

69Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEPLOYING MICROSERVICES

instead of OS libraries, microservices can, in theory, be written in any

language the developer wishes, and use any environment that’s desirable. As

these factors will be restricted only to the microservices container, this pattern

allows for greater flexibility within the development team.

That’s not to say that there are no restrictions on development once the

transition to an API-based application is made. Once the API is rolled out, in

fact, it cannot change; it can only grow. If original functionality changes, those

wild applications written for version 1.0 will stop working, resulting in SLA

violations.

“With an API comes a lot of responsibility, making sure it is compatible,

making sure it’s super simple: Our whole promise to developers is that we will

save you time, and provide access across languages,” Kamat said.

“Architecturally, we have to make sure we’re very aware of any breaking

changes to the API. That includes building out microservices for various

elements and making sure they can be kept up to date. It has to be a nimble

architecture.”

Thus, deploying microservices requires a good deal of infrastructure to be in

place just for the rollout of those new services. Load balancers, monitoring

systems, orchestration and administration systems and security products all

must be ready to go before even rolling out service one.

Choosing an Operating System
In days past, the choice of an operating system was generally between Red Hat

Enterprise Linux (RHEL) or Windows. The past three years demonstrate how

containers are symbolic of an overall shift from machine-oriented

infrastructure that runs on-premises software stacks, to a world of services

and software that runs across fast, distributed and sophisticated

infrastructure. The operating system (OS) will continue its importance, but

containers reflect a practice to use the resources available and run them

http://www.thenewstack.io

70Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEPLOYING MICROSERVICES

through services that allow for loosely coupled, proxy-oriented application

architectures that abstract the OS. The OS of choice for container architectures

is Linux, though Windows has early support. The actual Linux distribution

chosen may have wide-ranging effects on performance and maintainability of

the microservice.

CentOS and RHEL remain viable choices, but are also fairly large distributions.

Red Hat’s concession here is Project Atomic, a tiny Linux OS designed to do

little more than host containers. Alpine Linux currently holds the prize of

being the smallest popular distribution, but it can have some sharp edges for

the inexperienced user and is intended for use inside containers as the base OS

on which container images are built. VMware has Photon OS and Rancher has

RancherOS which are used as host-level operating systems which share their

kernel with running containers. Once an OS is chosen, further customization

can be had, thanks to the lack of other dependencies within each container OS.

Just as microservices can be written in any old programming language, they

can also be hosted in just about any environment the team can support. This

also allows for the quick testing of new technologies, such as Nix: Each

microservice can be an island unto itself, with green fields, or brown

overgrowth.

And this is the true promise of microservices deployments at scale: With a

well-oiled container construction, testing and orchestration pipeline, the

internal minutiae of each application becomes confined. The team building

that application will maintain that expert knowledge of its internals and will

share that knowledge when needed. But in the end, the goal is to push each

service to solidification. Even ossification.

Just as developers once spent months building enterprise services in assembly

language to ensure the fastest possible execution on mainframes,

microservices leverage deployment pipelines to facilitate rapid refinement,

iteration and feedback. This allows the development team to become utterly

http://www.thenewstack.io
http://www.projectatomic.io/
https://alpinelinux.org/
http://vmware.github.io/photon/
http://rancher.com/rancher-os/
https://nixos.org/nix/

71Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEPLOYING MICROSERVICES

obsessed with the minutiae, rather than constantly fretting over external

variables. Done properly, a microservice can eventually become provably

correct, and beyond further optimization.

Even without perfect internals, the microservices model is built to allow for

solidification of the APIs themselves. As with any API, versioning is essential,

and new features can be added, but old ones should rarely be subtracted. When

a microservice is deployed for the first time, it immediately becomes a

dependency somewhere else. This is another reason uptime remains the most

important focus for deployments.

Orchestration Platforms
Orchestrating deployments is where enterprises can show their core IT

competencies. Administrators and operators should already be chomping at the

bit to try out the hottest new tools, like Kubernetes, Terraform, Rancher and

Spine.

Choosing orchestration platforms, however, is more complicated than simply

picking Kubernetes and installing it. While this wildly popular open source

project has gained many adherents in the past year, it still remains a complex

piece of infrastructure software.

The entire cloud-based microservices architecture requires some basic

relearning, as well, said Dave McJannet, CEO of HashiCorp. “One thing cloud

has done is inspired people with an operating model which is different from

the model of the past. It’s characterized by infrastructure on demand and zero

trust networks. [It] means investing in security differently, and thinking about

networking differently; from physical host networking to service networking.”

While the new model of deployment parallels the old application server model,

the infrastructure plays a far more important role than in past systems.

“There’s a parallel for sure. That’s why when we draw the pictures, we have

http://www.thenewstack.io
https://kubernetes.io/
https://www.terraform.io/
https://rancher.com/
https://spi.ne/
https://twitter.com/davidmcj
https://www.hashicorp.com/

72Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEPLOYING MICROSERVICES

three elements of the stack: The core infrastructure, the security layer and

then runtime on top. That picture hasn’t changed for 30 years. The thing is,

now at the runtime layer, instead of an application server, perhaps you’re using

a container orchestration platform, but you still have the other parts of the

puzzle,” said McJannet.

Today, instead of deploying the application server, he said, teams are deploying

the entire service with rolling updates and automated scaling support. That’s a

different go-to-production model than most IT shops are used to, and it

requires all of the infrastructure for microservices to be in place before

anything can be deployed at all.

To this end, McJannet’s company offers Terraform, an environment

provisioning tool designed to stand up multiple services at the same time, and

to interconnect them. McJannet said he sees many customers using Terraform

to provision Kubernetes, as the Kubernetes world expands to include new

services like Istio and Giant Swarm.

This is the type of meta-thinking required to undertake proper microservices

deployments. As Carl Sagan said, “If you wish to make an apple pie from

scratch, you must first create the universe.”

http://www.thenewstack.io
https://www.terraform.io/
https://istio.io/
https://github.com/giantswarm

73Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER 07

DevOps Practices for
Microservices

T
he move to microservices typically requires a great deal of automation,

and automation implies operations. In today’s cloudy, agile world, the

science of operations is veering towards good DevOps practices.

Naturally, automation requires code, and operators today have some of the

most powerful tools and systems ever created for boiling down the complexity

of such environments into more easily programmable bite-sized chunks.

To get there, however, the real grind of microservices is the necessity of

having intricately woven systems in place, balancing traffic, monitoring

gateways and distributing a security model across the entire application stack

before bit one can even be deployed. It’s a bit like a chef requiring a properly

cleaned, tooled and prepped kitchen in order to prepare a dinner service. This

even extends to the waiters and ticketing systems one needs to pass those

well-poached plates of salmon to the starving customers.

The skill in DevOps is not being a great chef, but a great manager: managing

the waiters, the hot window, the prep chefs and the money, all from a vantage

point above the floor, with full visibility of the entire chain of processes,

products and people.

http://www.thenewstack.io

74Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEVOPS PRACTICES FOR MICROSERVICES

In the microservices world, this means it’s generally the duty of DevOps

engineers to set up all of the infrastructure required to build out at-scale

environments: web application servers, registries and repositories, OS and

container images, virtualized networking, firewalls, load balancers, message

queues and reverse proxies. It’s also up to the DevOps team to support new

technologies demanded by the development teams: HTTP/2, gRPC and

reliable SSL.

“With the explosion of microservices, you’re getting more and more projects.

Companies are finding that not only do they have to automate the DevOps life

cycle, but it has to be automated out of the box,” said Sid Sijbrandij, CEO of

GitLab. “For every project, you have to set up your creation tools, packaging

and management. If you have to do that every time, that’s going to take a lot

of time. The increased complexity of microservices makes it needed to have a

closer collaboration between development and operations. It’s much more

important to have them both on the same page.”

Database Automation for DevOps
One area of a microservices architecture that can become tricky to automate

is data. 35 From making databases run reliably at scale in Kubernetes, to the

sudden proliferation of outside data stores developers can adopt when freed by

a microservices architecture, data is a big problem for cloud-based

infrastructure, so much so that the earliest days of cloud saw the holistic

advice to “expel state from your application.”

Today, we know that stateful and stateless applications can both happily

coexist in the cloud, but the actual day-to-day work of managing that data

isn’t always easy. “What we are seeing is that data is following the same

pattern as we’ve seen on the compute side. As things break into smaller and

more logically sized components, the same makes sense on the data side,”

says Georgi Matev, head of product at Kasten.

http://www.thenewstack.io
https://http2.github.io/
https://grpc.io/
https://www.linkedin.com/in/sijbrandij/
https://about.gitlab.com/
https://www.linkedin.com/in/georgimatev/
https://kasten.io/

75Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEVOPS PRACTICES FOR MICROSERVICES

While that sounds good, it’s a different thing entirely to move data with agility

than it is to move code. Not only are there database design and operational

complexities with sharing or dividing data across services, but security and

compliance hurdles as well. That’s no excuse for not automating the data layer,

says Datical CTO Robert Reeves. “Everyone is getting a lot faster with

deploying the application, the compiled bits. But then, they’re still relying on

manual database changes to support that application. That causes a velocity

gap. You’ve got one part of the house leaving for home on time, while the other

side of the house — the database folks — are on suicide watch,” said Reeves.

The need for automation, driven by new distributed architectures, including

microservices and serverless, is leading many organizations to migrate their

databases to the cloud, according to Forrester Research. 36 Managed Database

as a Service (DBaaS) offerings from cloud providers or platform vendors such

as EnterpriseDB, MongoDB and Redis Labs, provide automated provisioning,

backup, scalability and integrated security. About 28 percent of global

infrastructure decision makers claim they are already supporting a DBaaS

deployment and Forrester predicts that this number will likely double by 2021.

“We need to get the human out of this,” said Reeves. “We need to remove

intervention. The first thing you need to get over is this idea that we need a

human to manually review and execute our SQL scripts,” said Reeves. “We’re

big fans of microservices, but you need to put the power of updating these

services and the databases that support the microservices in the hands of the

product team.”

This is the true realization of DevOps — the team that builds the service, also

runs the service. In this way, services remain independent and development

moves faster. What’s the point of giving teams the ability to push code into

production in seconds, Reeves asks, if they then must wait more than a week

so that an external services team can run a script on the database? DBaaS gives

developers the means to control their service’s database and removes the

http://www.thenewstack.io
https://www.datical.com/
https://www.linkedin.com/in/robertreeves/
https://www.enterprisedb.com/
https://www.mongodb.com/
https://redislabs.com/

76Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEVOPS PRACTICES FOR MICROSERVICES

burden of operations to build and maintain any number and flavor of databases

across the whole set of services.

Kubernetes and DevOps
The introduction of Kubernetes as the new standard for container

orchestration brings another layer of complexity to the microservices

infrastructure. At the same time, when properly configured, it’s a means to

manage scale on distributed architectures. Kubernetes has transformed the

entire DevOps ecosystem — which is ultimately transforming businesses. As

Kubernetes adoption has grown, some of the questions around how it fits into

existing infrastructure patterns are still being answered. Still, it falls to

DevOps to understand and administrate Kubernetes so that developers can

have their on-demand databases, pipelines and deployments. Some benefits

that Kubernetes brings to DevOps, which The New Stack has covered

previously in our ebook “CI/CD with Kubernetes,” include: 37

• Independently deployable services: You can develop applications as a

suite of independently deployable, modular services. Infrastructure code

can be built with Kubernetes for almost any software stack, so

organizations can create repeatable processes that are scalable across

many different applications.

• Deployment frequency: In the DevOps world, the entire team shares the

same business goals and remains accountable for building and running

applications that meet expectations. Deploying shorter units of work more

frequently minimizes the amount of code you have to sift through to

diagnose problems. The speed and simplicity of Kubernetes deployments

enables teams to deploy frequent application updates.

• Resiliency: A core goal of DevOps teams is to achieve greater system

availability through automation. With that in mind, Kubernetes is designed

to recover from failure automatically. For example, if an application dies,

http://www.thenewstack.io
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/

77Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEVOPS PRACTICES FOR MICROSERVICES

Kubernetes will automatically restart it.

• Usability: Kubernetes has a well-documented API with a simple,

straightforward configuration that offers phenomenal developer UX.

Together, DevOps practices and Kubernetes also allow businesses to deliver

applications and features into users’ hands quickly, which translates into

more competitive products and more revenue opportunities.

In addition to improving traditional DevOps processes, along with the speed,

efficiency and resiliency commonly recognized as benefits of DevOps,

Kubernetes solves new problems that arise with container and microservices-

based application architectures. This is one reason why many companies are

already building out infrastructure on top of Kubernetes.

As with all the major cloud providers, IBM is focusing on making Kubernetes

easier to consume, so DevOps won’t have to be monopolized by turning the

knobs on such a complex system. The Istio service mesh project, for example,

allows DevOps teams to have full control of the data and traffic flows around

their microservices. Daniel Berg, IBM distinguished engineer, container service

and microservices, wrote to The New Stack in an email that, “In the open

community, [IBM has] worked with other tech leaders such as Google and Lyft

to build Istio, which equips developers with an orchestration layer on top of

their containers to better secure and manage the traffic flowing through them.

We’ve also worked with Google to launch Grafeas, which helps secure the

supply chain of code around containers as they’re deployed and used.”

A New DevOps Mindset
Behind all these services is the need for a unified set of processes. The various

teams invested in the microservices inside a company need open lines of

communication, and they need to be implemented in a way that cannot be

sidestepped or avoided. It’s an undertaking, and it’s about encoding human

behavior into automation, deployment and development pipelines.

http://www.thenewstack.io
https://www.linkedin.com/in/daniel-berg-18b2bb3/
http://www.ibm.com/
http://bit.ly/2x5VLZD
https://www.lyft.com/
https://istio.io/
https://github.com/grafeas/grafeas

78Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEVOPS PRACTICES FOR MICROSERVICES

As Craig Martin writes in “CI/CD with Kubernetes,” DevOps is a journey and

not a destination. 38 It means building cross-functional teams with common

goals, aligning the organization around the architecture — reversing

Conway’s Law — and creating a culture of continuous improvement. One of

the higher-level achievements in a DevOps journey is continuous delivery.

Here’s how ThoughtWorks encapsulates the ideal CD mindset: “Continuous

Delivery is the natural extension of Continuous Integration, an approach in

which teams ensure that every change to the system is releasable, and release

any version with the push of a button. Continuous Delivery aims to make

releases boring, so that we can deliver frequently and get quick feedback on

what users care about.”

CD does not happen “automagically” when databases are automated. The

advantages come with how it makes CD easier to put in place. Kubernetes

defines a container deployment as managing instances. It is up to the user to

develop the microservice and automate deployments and integrations across

different environments.

“You have to change around your thinking in terms of how you do application

development,” said Chris Stetson, chief architect and senior director of

microservices engineering at NGINX. “One of the things that we have been

doing a lot of recently has been creating a uniform development and

deployment process, where you have your application developers working in a

Dockerized version of the application, and doing their coding and testing

essentially in that Docker environment, which very closely mimics the

environment that we will be deploying to ultimately for our customers. Having

that process built out so it’s easy for developers to get started with is

incredibly valuable.”

NGINX has implemented an almost ancient, but no less effective, solution to

this problem: Makefiles. “We’ve been using Makefiles a lot to encapsulate the

more complex Docker compose commands we’ve put together to make a build

http://www.thenewstack.io
https://www.thoughtworks.com/
https://www.linkedin.com/in/cstetson/
https://www.nginx.com/

79Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DEVOPS PRACTICES FOR MICROSERVICES

target for our frontend developers to be able to do their Webpack frontend

development,” Stetson said. “They’re connecting back to all the services they

need dynamically reloading the changes they’re working with, and we like

using a Makefile because its like declarative Bash scripting essentially.”

No single tool yet offers the perfect solution for managing cloud native

applications from build through deployment and continuous delivery. Draft,

Helm, Skaffold, Spinnaker and Telepresence are DevOps tools that were

purpose-built for cloud native applications. Such tools are transforming the

way teams collaborate, placing transparency and observability at the center,

while also increasing automation and codifying practices through policy as

code.

http://www.thenewstack.io

80Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES 80

The microservices philosophy and architectural

approach has existed for a while in the form of a

service-oriented architecture (SOA). A new set of

sophisticated tooling makes this elegant architecture

practical to deliver. The number of services, and their ephemeral

nature, makes it virtually impossible to secure the environment using

the tools and manually-driven processes of the past.

“It really forces you to change the approach that you take for security

from human-designed and maintained with a lot of direct

manipulation to a much higher degree of automation,” John Morello,

CTO of Twistlock, said.

A new breed of security tools can understand and model an application’s

typical traffic patterns, develop a reference model that reflects that

known good state, and search for anomalies that violate that model. At

the same time, new patterns and practices for developers, operations

and security teams help integrate that security knowledge from the

very beginning of the application development life cycle.

“One of the more important, but less obvious, changes is the general

shift in responsibility for finding — but more so for correcting —

security vulnerabilities upstream left in the development life cycle,”

Morello said.

Morello, who helped author the National Institute of Standards and

Automation Makes

Microservices Security

Practical to Deliver

https://soundcloud.com/thenewstackmakers/automation-makes-microservices-security-practical-to-deliver
http://bit.ly/2sOzS1A

81Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

WHEN BREAKING UP A MONOLITH, CONSIDER DATA AS MUCH AS CODE

John Morello is the chief technology officer at Twistlock. As CTO,
Morello leads the work with strategic customers and partners, and
drives the product roadmap. Prior to Twistlock, Morello was the chief

information security officer of Albemarle, a Fortune 500 global chemical
company, and spent 14 years at Microsoft.

Technology’s Application Container Security Guide, says it’s still

possible to follow the same security patterns — with developers

passing a build off to operations to scan and produce a bug report. But

containers provide an opportunity to deploy and manage applications

more efficiently and securely.

“A security team can actually have quality gates in the [dev] process to

say if this build contains a critical vulnerability, fail the build and force

the developer to fix it right then and there before it ever leaves the dev

environment,” he said.

Learn how security considerations change with a microservice

architecture, the new patterns and practices teams are following to

secure containerized microservices, and how advanced tooling can help

automate and streamline security for cloud-native applications. Listen

on SoundCloud.

http://www.thenewstack.io
https://twitter.com/morellonet
http://bit.ly/2sOzS1A
https://twitter.com/morellonet
https://soundcloud.com/thenewstackmakers/automation-makes-microservices-security-practical-to-deliver
https://soundcloud.com/thenewstackmakers/automation-makes-microservices-security-practical-to-deliver

82Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER #: CHAPTER TITLE GOES HERE, IF TOO LONG THEN...

SECTION 03

MANAGING
MICROSERVICES IN
PRODUCTION
New patterns and practices are needed to manage the complexity that
comes with running microservices at scale.

http://www.thenewstack.io

83Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Contributors
B. Cameron Gain’s obsession with computers began when he

hacked a Space Invaders console to play all day for 25 cents at

the local video arcade in the early 1980s. He then started writing

code for very elementary games on the family Commodore 64,

and programming in BASIC on the high school PC. He has since become a long-

time and steadfast Linux advocate and loves to write about IT and tech. His

byline has appeared in Wired, PC World, CIO, Technology Review, Popular

Science, and Automotive News.

Todd R. Weiss is a technology journalist who has been covering

enterprise IT since 2000. Most recently he was a senior writer

for eWEEK.com covering all things mobile. In addition to writing

for The New Stack, he has also written for CITEworld,

Computerworld, PCWorld, Linux.com and TechTarget.

http://www.thenewstack.io
https://twitter.com/brucegain
https://twitter.com/brucegain
https://twitter.com/TechManTalking
https://twitter.com/TechManTalking

84Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Microservices Monitoring

M
icroservices are already in production at companies with a business

requirement to run application architectures that are scalable and

elastic. The microservices allow the organization to develop

application architectures that can run workloads in an efficient and

automated manner based upon a host of factors. There is most certainly

infrastructure to manage that requires traditional maintenance and operations

expertise. The workloads are diverse and require different processes,

depending on the technology stack. But traditional methods no longer suffice.

Container architectures have changed the dynamic of how applications are

managed and monitored.

Containers are pretty much the accepted manner for managing microservice

architectures. That’s true for hosted services that have adopted Kubernetes and

offer services based upon a container infrastructure. It’s also true for

organizations that use containers to increasingly manage their workloads and

adapt to new market conditions.

While these technologies bring the benefits of scale and agility, they also

introduce complexity when managing them at scale. For example, the

Kubernetes container orchestrator makes it easy for you to deploy an

CHAPTER 08

http://www.thenewstack.io

85Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES MONITORING

application that scales across a 1,000-node cluster and deals with deployment

and node failures. However, it can be complex to route traffic for that service,

to monitor the overall health of the service — not just of individual nodes and

pods — and to ensure fair resource allocation between this service and others

within the cluster, Liron Levin and John Morello write on The New Stack. 39

The space to iterate that comes with containers is now opening new patterns

in application monitoring and management that, in turn, create more defined

methods for establishing patterns in application-oriented environments.

Kubernetes is serving as a way to use containers for managing state as well as

the abstraction to manage the container workloads. New service mesh

technologies, for example, when paired with Kubernetes, enable traffic

management, service identity, policy enforcement and telemetry for

microservices. The advent of artificial intelligence (AI) and machine learning

(ML) have also led to new uses for data streaming at the core of the

infrastructure, with developers using it to run deep learning frameworks and

DevOps teams following these patterns through observability practices. With

AI and ML added to the mix, this relatively new and powerful computing

architecture will become even more powerful, increasing automation and even

more unknown wonders, while also putting many aspects of these complex

systems beyond any individual’s comprehension.

But as organizations break the shackles of monolithic applications in favor of

deployments that run on a collection of microservices packaged inside

containers, they quickly learn life can become more complicated than

expected. First of all, microservices, which might serve various applications

with very different computing needs, need to communicate and they do so

over a network. The resulting exponential number of potential

interdependencies and errors thus makes managing and monitoring

microservices that much harder.

Teams quickly learn that they can’t remain completely isolated and deliver the

http://www.thenewstack.io

86Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES MONITORING

same amount of business value. Someone has to have the big picture of the

application as well. 40 “Any time you’re digging in complex systems like

microservices, it’s really hard to understand what’s going on,” Matt Chotin,

senior director of technology evangelism at AppDynamics, said. “And there’s

only so much prodding and poking you can do in production before everyone

starts getting, quite rightly, super nervous.”

Cloud native monitoring, then, is less about incident response — finding and

fixing problems in whack-a-mole fashion — and is instead focused on

collecting and analyzing data that allows for automated responses, such as

scaling, rollbacks and load balancing. At the same time such observability

practices provide insight that feeds back into the development cycle to improve

user experience and business outcomes.

Companies such as LinkedIn, Target and Netflix use this cloud native

approach, gauging their success by first measuring the quality of the end user

experience that is rendered. “When the digital experience becomes the

bellwether measurement, their DevOps-savvy site reliability engineering (SRE)

teams spend less time chasing misleading alerts, and, instead, focus their

efforts on how they can deliver the best experience possible across every

touchpoint of customer engagement,” Kieran Taylor, senior director of product

marketing at CA Technologies, writes on The New Stack. 41

Microservices Analytics Tools
The obvious solution, as the momentum for massive-scale deployments of

microservices builds, is the adoption of advanced microservices analysis tools,

as IT organizations wake up to the need to be able to monitor microservices

down to every individual module, while also getting a comprehensive, system-

wide view.

“People have been focusing on just setting up microservices since their

adoption began a couple of years ago. But people are just starting to realize

http://www.thenewstack.io
https://www.linkedin.com/in/mchotin/
http://bit.ly/2n4bAwi
https://www.linkedin.com/in/kierantaylor/
http://bit.ly/2o3uhkV

87Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES MONITORING

that complexity becomes an issue when managing hundreds or perhaps

thousands of interdependent microservices,” Jakob Freund, co-founder and

CEO of Camunda, said. “Now, people are beginning to see on a granular level

how they work and want more visibility about how they all play together.”

Monitoring has a different meaning today. In the past, developers built the

applications. Deployments were done by operations teams who managed the

applications in production. The health of services was mainly determined

based on customer feedback and hardware metrics such as disk, memory or

central processing unit (CPU) usage. In a cloud native environment, developers

are increasingly involved in monitoring and operational tasks. Monitoring

tools have emerged for developers who use them, to set up their markers and

fine tune application-level metrics to suit their interests. This allows them to

detect potential performance bottlenecks sooner. 42

Observability — or the ability to understand how a system is behaving by

looking at the parameters it exposes through metrics and logs — gives

engineers the information they need to adapt systems and application

architectures to be more stable and resilient. This provides a feedback loop to

developers which allows for fast iteration and adaptation to changing market

conditions and customer needs. Without this data and feedback, developers

are flying blind and are more likely to break things. With data in their hands,

developers can move faster and with more confidence. Our ebook “CI/CD with

Kubernetes” discusses observability and cloud native monitoring in more

depth.

Since the advent of large-scale deployments of microservices just a couple of

years ago, Netflix, Uber, ING and Amazon have developed their own engines

for microservices orchestration and analytics in-house.

Netflix, for example, offered a seminal look at the possibilities that

microservices analytics, as well as orchestration, offer when the video

http://www.thenewstack.io
https://www.linkedin.com/in/jakob-freund-a3a7a33/
https://camunda.com/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/

88Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES MONITORING

FIG 8: Monitoring in a cloud native environment is built around observability, or the
ability to understand how a system is behaving by looking at the parameters it ex-
poses through metrics and logs.

streaming company revealed its open source Conductor platform over a year

ago. Netflix continues to rely on the platform to allow millions of users to

select, stream and download movies and TV series, as microservices run

transparently in the background. Conductor’s orchestration engine manages

these thousands of microservices with a JSON DSL-based blueprint, which

defines execution flow. Conductor enables Netflix developers and

administrators to analyze, test, pause and stop, and repair individual models

within the different processes, all of which power Netflix’s worldwide

network.

“As the number of microservices grow and the complexity of the processes

increases, getting visibility into these distributed workflows becomes difficult

without a central orchestrator,” content Netflix engineer Viren Baraiya wrote

The Four Pillars of Observability

Source: https://www.weave.works/technologies/monitoring-kubernetes-with-prometheus/

Logging

++

++

Metrics

Tracing

Alerting

Recording of
discrete events.

Notification when event
behavior falls outside

of acceptable threshold
and could potentially

become problematic.

Aggregation of similar
events to gain a higher
level of insight.

Recording, ordering and
binding of data from connected
events to provide context.

=
Observability

© 2018

http://www.thenewstack.io
https://netflix.github.io/conductor/
http://linkedin.com/in/virenb

89Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES MONITORING

in a blog post. 43 “We built Conductor ‘as an orchestration engine’ to address

the following requirements, take out the need for boilerplate in apps, and

provide a reactive flow.”

Open source analytics and orchestration platforms, such as Apache Spark and

Elastic, Logstash and Kibana (the ELK stack), offer a wealth of information and

code for organizations that want to take the plunge and develop their own

deployments to collect, store and analyze application performance in-house.

These deployments offer code for visibility into how individual microservices,

which are really separate applications, are performing and communicate with

each other, many of which have separate persistent storage interfaces.

The ultimate goal is for processes, errors and bottlenecks to be managed in

ways that are totally transparent to end users, as microservices-based

platforms fix themselves with the help of microservices analytics. In the event

of a bottleneck, for example, an end-use customer who tries to buy a widget or

service on the web would ideally never receive an error message that might

prompt the user to “try again later.”

Developing microservices orchestrations and associated analytics capabilities

are easier said than done in-house. Design and development of homegrown

solutions for application and user monitoring require a considerable amount

of time and effort. What’s more, the challenge only grows as machine learning

and artificial intelligence for IT operations (AIOps) become core components

of automated problem remediation. Common performance problems are

recognizable, and machine learning means pattern recognition can be

employed to automatically detect and remediate issues. However, for that to

work, tools must have a library of these performance problems and their

remedies. 44

As a result, organizations that lack resources to develop the analytics tools

in-house turn to third parties with solutions and services often built on the

http://www.thenewstack.io

90Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES MONITORING

same open source tools. Such commercial monitoring solutions benefit from

decades of learning and evolution, but have historically lacked the ability to

correlate across silos. That has changed through the adoption of the latest big

data and open source technologies that can normalize and correlate analytics

to eliminate the traditional silos of monitoring that previously limited insight

and control of modern applications.

“Microservices are moving toward mainstream use today and often show

many integration points with existing monolithic enterprise applications,”

Torsten Volk, an analyst for Enterprise Management Associates (EMA), said.

“Meanwhile, vendors of DevOps-centric application and infrastructure

analytics software are stepping up to monitoring this often complex and

dynamic world of applications consisting of shared services with often

disconnected release schedules.”

To fill in the void for organizations seeking third-party alternatives that offer

microservices analytics and monitoring capabilities within Business Process

Model and Notation (BPMN), Oracle’s BPM offering or IBM’s WebSphere

Processor Server serve as alternatives for large-scale deployments.

Microservices analytics technologies are in abundance. The market is now

witnessing a whole new generation of services, platforms and tools that are

largely built on open source platforms such as Prometheus, which recently

graduated from the CNCF as a project that has gained acceptance.

Security Dynamics
Companies are stepping up to offer tools to closely track performance and

other metrics, but tighter security monitoring for microservices bundled with

analytics software are only emerging from companies such as Sysdig.

However, third-party vendor tools and services geared for microservices

security monitoring do exist as stand-alone services. They might technically

fall under the microservices analytics product services category, but are

http://www.thenewstack.io
https://www.linkedin.com/in/torstenvolk/
https://www.enterprisemanagement.com/
http://www.bpmn.org/
http://www.bpmn.org/

91Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES MONITORING

geared for security.

The monitoring and security challenges associated with microservice

architectures arise from how microservices were created to be highly scalable

— which means they may replicate themselves across nodes rapidly, run for

minutes, and then shut down. Security tools geared for static locations, even

virtual ones, will not work. “Additionally, the network becomes how you do

dynamic scaling, so network controls must be able to keep up with the

changes and have the visibility for intra-host and inter-host communication

between microservices,” Rani Osnat, vice president of product marketing for

Aqua Security, said.

Security, as well as monitoring, will, of course, continue to evolve as

microservice deployments and underlying code evolve. For those organizations

just looking to get their feet wet, the main concern, in addition to data

security, is how to use analytics to track the complexity of the underlying

architecture in the near term.

“Organizations are just now adopting microservices and setting up these

somewhat complex infrastructures,” Camunda’s Freund said. “The next

problem is handling this complexity and that is where big workflow

automation [can help].”

In the longer term, expect to see evolving tooling and capabilities around

ML-driven anomaly detection, service mesh integration and automated

compliance checks, among other features, that will more seamlessly integrate

security monitoring into DevOps practices and the infrastructure itself.

http://www.thenewstack.io
https://www.linkedin.com/in/raniosnat/
http://bit.ly/2j9HTY7

92Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Microservices Pricing

A
s enterprises update their IT infrastructures, they want to know what

it’s going to cost to add microservices to the mix. So far, though,

figuring out these costs ahead of time has been challenging. Much of

this is because the costs depend on what enterprises want to do, how their

existing infrastructures are built, and a myriad of other questions which will

affect the final costs and estimates.

Yet figuring out the costs of microservices, from integration to operations, is

critical to determining whether or not they are worthwhile, as well as figuring

out if they should be used to migrate existing applications or to build new

ones. Even IT consultants, industry analysts and some microservices

companies admit they don’t have all the answers at this point.

“I don’t think anyone has this down to a hard science with dollar figures,”

said Joe Beda, the CTO and co-founder of Kubernetes container integration

vendor, Heptio.

The key is to know your existing infrastructure and development costs so that

you can adequately estimate both the new costs you might incur with a

microservices approach, as well as any savings you might realize. Then work

CHAPTER 09

http://www.thenewstack.io
https://twitter.com/jbeda
https://heptio.com/

93Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES PRICING

with an architect who has the right knowledge of microservices to devise a

rigorous plan and roll it out in small steps that you can test and measure.

Why Microservices Can Be Worth the Pricing
Headaches
The lure of microservices is that they can simplify the complex problems of

trying to make changes in large, unwieldy monolithic IT systems that are

built from a wide assortment of components, technologies and applications.

By sectioning off services and processes within the monolithic system using

containers and microservices, smaller application components can operate

individually and be self-sufficient and self-contained, allowing them to be

used without affecting other related code. By using microservices, IT

administrators don’t have to worry about problems arising through changes

to existing architecture, as the changes only happen inside the smaller

subsystems, or microservices, set up in the containers.

This is also why it’s hard to quantify the costs, said Chris Priest, a senior

consultant with U.K.-based cloud consultancy Amido. “It just depends hugely

on what you are doing,” he said. “The ongoing costs for microservices are far

less than it would be for a monolith-based system. I think your costs could go

down easily by up to 90 percent less. It depends on how bad it was in the first

place.”

But the savings don’t just come by using container systems such as

Kubernetes, said Priest. The savings also come through changes in the culture

involving developers.

With a monolithic infrastructure, a company can have 100 developers working

on the same code. This can be a nightmare because their changes don’t jibe

with those of others, adding to complexity and problems, he said. But under a

microservices approach, developers can be independently working on different

parts of the code, which allows more work to be completed with less overlap

http://www.thenewstack.io
https://twitter.com/cjrpriest
https://amido.com/

94Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES PRICING

and complication, Priest said.

“Switching the team to a microservices way of work, you can get much more

productive,” said Priest. “But again, it’s hard to estimate the savings of such a

beneficial move.”

Robert Starmer, a cloud advisor and founding partner of Kumulus

Technologies, a Las Vegas-based cloud consultancy, said one place to start

when trying to determine microservices costs is to look at microservices as

part of DevOps, and then break down those costs to derive estimates. Begin

with the company’s development environment, he said.

“If you already have containers, you should have an idea of how your system

scales, so that can help with figuring microservices costs,” said Starmer.

“We’ve done that with a couple of companies.”

Next, look at the fixed costs of what each developer needs in terms of access to

testing and development servers or virtual machines, then add in other related

development costs, he said. Create a model based on the scale of the

application, how many developers are going to work on the problem and other

factors.

Ultimately, though, most IT leaders don’t take these steps. “And that’s part of

the reason … it’s hard to say what a microservices deployment on Kubernetes is

going to cost, because of the lack of rigor in going through an application

planning process,” Starmer explained.

To help make these calculations easier, Starmer said he is working on

developing an application to give these kinds of estimates to IT leaders as they

eye the benefits of microservices inside their operations.

The costs for running microservices with Docker is dictated by the size of a

company’s server and compute infrastructure, and not based on the number of

containers being used, according to Docker. The enterprise platform does not

http://www.thenewstack.io
https://www.linkedin.com/in/rstarmer/
https://kumul.us/
https://kumul.us/

95Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES PRICING

differentiate in pricing from legacy or microservices containers — it supports

both application types.

Good Advice: Start Small
Begin tracking and gauging the costs of microservices, said Heptio’s Beda, by

starting small and proceeding with an open mind.

“Breaking off one or two services will help [you] understand the trade-offs for

that particular application and environment,” he said. “As that is understood,

it will become much more reasonable to further invest in microservices.”

It’s also smart to avoid creating services that are too micro, Beda added.

“There is overhead for each new service, and that should be taken into account

and balanced against the benefits in terms of velocity of decoupling the

architecture. Tools, like Kubernetes, can help reduce that overhead and

complement a microservices approach.”

Meanwhile, using a container platform rather than just raw virtual machines

can also increase efficiency and reduce costs, Beda explained. This is because

operations teams tend to overprovision VMs in order to accommodate spikes in

load, and containerized workloads are often deployed on infrastructure with

per-VM pricing. 45 A container platform eliminates the need to provision those

resources in advance; its resources simply scale with the load. “This isn’t

microservices, per se, but is often paired with that type of architecture. It isn’t

unusual to see utilization go from less than 10 percent to less than 50 percent.

This can drive huge savings from reduced hardware, data center or cloud

usage, as well as reduced administrative costs.”

At the same time, be sure to keep in mind the cost-saving benefits of a

microservices-based architecture, which allows developers to move faster, said

Beda. “This means faster time to market for applications, happier and more

productive developers and improved competitive positioning.”

http://www.thenewstack.io

96Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

MICROSERVICES PRICING

Ask Vendors for Customer References
As the process continues, don’t forget to seek old-fashioned customer

references, said Rob Enderle, principal analyst at Enderle Group.

“The obvious questions would involve locating accounts from the vendor that

are like yours and then asking to interview them to learn from their

experiences,” he said. “In the end, with microservices, the IT shop owns the

eventual solution and needs to have both the requisite skill set to build it and

the tolerance for the lack of another throat to choke, other than their own, if

the project goes south.”

Using microservices correctly and effectively comes down to the core skills in

the IT group, said Enderle. “If you don’t know the questions to ask, you likely

don’t have the core skills needed to make microservices work and would do far

better with complete solutions. It reminds me of folks asking about building

their own car. If they have the skills, they know the questions to ask. If they

don’t, a book of questions won’t get them to the skills they need.”

http://www.thenewstack.io
https://twitter.com/Enderle
http://www.enderlegroup.com/

97Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER 10

Disaster Recovery for
Microservices

Y
ou can always spot the hot jobs in technology: they’re the ones that

didn’t exist 10 years ago. Site Reliability Engineers (SREs) did exist a

decade ago, but they were mostly inside Google and a handful of other

Silicon Valley innovators. Today, however, the SRE role exists everywhere.

From Uber to Goldman Sachs, everyone is now in the business of keeping their

sites online and stable.

Microservices and SREs evolved in parallel inside the world’s software

companies. SREs live and die by their broader perspectives of the system they

are maintaining and optimizing. The SRE role combines the skills of a

developer with those of a system administrator, producing an employee

capable of debugging applications in production environments when things go

completely sideways. Some would argue their fuller perspectives about the

resources that are managed doesn’t provide the more granular perspective

that DevOps engineers need to manage individual services. But in an

organization and infrastructure as large as Google, it’s impossible for an SRE

to have a complete view. Still, SREs provide context that a DevOps team

working closer to the services may not have.

At scale, when teams are managing hundreds or thousands of services

http://www.thenewstack.io
http://bit.ly/2x5VLZD

98Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DISASTER RECOVERY FOR MICROSERVICES

communicating over a network, it’s helpful to remember that 1) the network

is not reliable, and 2) failure is inevitable. These assumptions create a whole

new approach to site reliability and problem-solving for engineers who are

supporting a microservices application, writes Sam Newman in “Building

Microservices”. 46

“Even for those of us not thinking at extreme scale, if we can embrace the

possibility of failure we will be better off. For example, if we can handle the

failure of a service gracefully, then it follows that we can also do in-place

upgrades of a service, as a planned outage is much easier to deal with than an

unplanned one.

“We can also spend a bit less of our time trying to stop the inevitable, and a

bit more of our time dealing with it gracefully. I’m amazed at how many

organizations put processes and controls in place to try to stop failure from

occurring, but put little to no thought into actually making it easier to recover

from failure in the first place.”

As Google engineers essentially invented the SRE role, the company offers a

great deal of insight into how they manage systems that handle up to 100

billion requests a day.

“ The initial step is taking seriously that reliability

and manageability are important. People I talk to are

spending a lot of time thinking about features and

velocity, but they don’t spend time thinking about

reliability as a feature.”

— Todd Underwood, site reliability engineering director at Google.

Top Considerations for SREs
Reliability and availability should be considered at every level of a project. As

an example, Underwood cites the way Gmail fails by dropping back to a bare

http://www.thenewstack.io
https://cloudplatform.googleblog.com/2016/04/lessons-from-a-Google-App-Engine-SRE-on-how-to-serve-over-100-billion-requests-per-day.html
https://cloudplatform.googleblog.com/2016/04/lessons-from-a-Google-App-Engine-SRE-on-how-to-serve-over-100-billion-requests-per-day.html
https://www.linkedin.com/in/todd-underwood-501a02/
http://bit.ly/2x5VLZD

99Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DISASTER RECOVERY FOR MICROSERVICES

HTML experience, rather than by halting altogether. “I’ll take the ugly HTML

[version], but I can read my email. Availability is a feature and the most

important feature. If you’re not available, you don’t have users to evaluate your

other characteristics. Organizations need to choose to prioritize reliability.”

Underwood stipulated that every organization is different and that some of the

issues Google encounters are not typical. But he did advocate for some more

holistic practices.

“For distributed applications, we’re running some kind of Paxos consistent

system. [Google’s book on SREs] has a whole chapter on distributed

consensus. 47 It seems like a computer science, nerdy thing, but really if you

want to have processes and know which ones are where, it’s not possible

without Paxos in place,” said Underwood.

Paxos is the algorithm for distributed consensus gathering, often used to work

out inconsistencies that can arise in distributed systems in which multiple

copies of the same software are running on different machines. Paxos allows

for a consistent view of the state of the system, despite failures in individual

components. 48

Underwood highlights another aspect of the SRE job that is essential: visibility.

When microservices are throwing billions of packets across constantly

changing ecosystems of cloud-based servers, containers and databases,

finding out what went wrong where is essential to troubleshooting any type of

problem. The second most cited challenge for microservices in production —

beyond increased operational challenges with each additional service — is

identifying the root cause of performance issues, with 56 percent of

microservices adopters surveyed citing this as a concern, according to

Dimensional Research and LightStep. 49 Furthermore, when asked to compare

the difficulty of troubleshooting different environments, 73 percent reported

microservices were harder, while only 21 percent said they were easier than

http://www.thenewstack.io
http://www.cs.yale.edu/homes/aspnes/pinewiki/Paxos.html

100

DISASTER RECOVERY FOR MICROSERVICES

FIG 10: Microservices make it harder for teams to track down the cause of application
performance problems.

#Fopters 5a[/KcroservKces are /ore DKfficWNt to
TroWDNesJoot TJan a /onoNKtJ

© 2018

More difficult
to troubleshoot

Easier to
troubleshoot

No difference

Source: https://go.lightstep.com/global-microservices-trends-report-2018.

6%

73%

21%

monoliths. This is where the full-stack aspects of an SRE’s job come into play.

Google recently introduced a number of tools just for this type of work.

“If you have 100 containers, things like doing a stack trace on a monolith

become very difficult. You need a distributed trace,” said Morgan McLean,

product manager on Google Cloud Platform.

To remedy this, open source tools, such as the Cloud Native Computing

Foundation’s Jaeger and OpenTracing projects, as well as a host of products

from companies such as AppDynamics, Dynatrace, Google, LightStep and New

Relic, offer distributed tracing capabilities. Google’s own recently released

tools include Stackdriver Trace, Stackdriver Debugger, and Stackdriver

Profiler. And there’s a reason these tools sound like old-school testing and

operations tools from traditional enterprise vendors: They perform the more

traditional troubleshooting tasks developers and operations people are used

http://www.thenewstack.io
https://www.linkedin.com/in/morganmclean/
https://www.jaegertracing.io/
http://opentracing.io/
http://bit.ly/2n4bAwi
http://bit.ly/2v5jY2N
http://bit.ly/2x5VLZD
https://lightstep.com/
http://bit.ly/2u3HCPd
http://bit.ly/2u3HCPd
https://cloud.google.com/trace/
https://cloud.google.com/debugger/
https://cloud.google.com/profiler/
https://cloud.google.com/profiler/

101Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DISASTER RECOVERY FOR MICROSERVICES

to, but with a focus on microservices and performing these duties in the

cloud.

Stackdriver Profiler is in beta, but allows for direct CPU utilization monitoring

on applications running inside of a cloud, while Stackdriver Debugger offers a

way to essentially insert breakpoints into cloud-based, microservices-based

applications. And Stackdriver Trace offers the full-stack tracing capabilities

McLean alluded to.

“This is really powerful for general performance improvements and powerful

for cost reduction,” said McLean of Stacktrace Profiler. “Snapchat tried it out,

and within a day of collecting data they realized a very small piece of code — I

think it was a regular expression — which should not have even been showing

up in Profiler, was actually consuming a fairly large amount of CPU. This could

happen to anyone. It happens to Google. The Snapchat demonstration was just

a really great demonstration of the power of this profiling technology.

“Without tools like this, this generally isn’t possible,” said McLean.

Monitoring is essential to microservices management. While a service mesh

can help manage the application components, observability is critical to

understanding how the services are behaving. Such observability is what

creates the ability to develop management patterns that are resilient and

manageable. It also provides feedback loops that enable developers to iterate

and improve based on data and results.

Chaos engineering is another emerging area which allows SREs to design

resilience into their distributed applications by breaking them over and over

again with software specially designed for the purpose. 50 According to

co-founder and CTO of ChaosIQ Sylvain Hellegouarch, chaos engineering

allows SREs to “ask questions about your system’s behavior under certain

conditions, and [enables] you to safely try it out live so that you can,

collectively with your team, see if there is a real weakness and learn what the

http://www.thenewstack.io
https://chaosiq.io/

102Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DISASTER RECOVERY FOR MICROSERVICES

right response should be.” 51 Gremlin’s Failure as a Service and Litmus are

examples of a new class of cloud native tools to help SREs manage

microservices.

New Thinking
The focus on new style tooling is shared by Matt Chotin, senior director of

technical evangelism at AppDynamics. He said that teams need to rethink the

way they determine the health of entire applications, once they’ve been moved

from monolith to microservice.

“You have a myriad of systems. The joy of microservices is that you get to pick

the stack that’s right for a particular piece. Each thing might have its own way

of monitoring, its own metrics, etc. To understand the health of your entire

application and see how a transaction is going to flow through all these

different microservices, you have to have a system that is going to help you

navigate that. You want something that is going to think in terms of the

transaction,” Chotin said.

The engineer shouldn’t think in terms of whether the service is up or down,

Chotin said. “Your DevOps team cares about looking at a service to know

general availability, but as far as whether or not you are serving the business

correctly, you need monitoring that can traverse the entire ecosystem, from

application code to infrastructure code,” said Chotin.

New tooling isn’t always the answer, however. New patterns in site reliability

engineering are emerging to complement the tooling and inspire new features

and functionalities. These patterns embrace the cloud native mindset that

failure is inevitable, and are thus designed to help ensure safety and reliability

in spite of failure — and not as a means to avoid it. Such patterns include

putting timeouts on all out-of-process calls and a default timeout on

everything; instituting circuit breakers for failed requests; bulkheads for

isolating failure and designing services for isolation; and multiple scaling, load

http://www.thenewstack.io
https://www.gremlin.com/
https://www.linkedin.com/in/mchotin/
http://bit.ly/2n4bAwi

103Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DISASTER RECOVERY FOR MICROSERVICES

balancing, performance testing and service discovery patterns. 52

Integration testing, for example, becomes uniquely challenging in a

microservices environment because dependencies aren’t always known or

available for testing until a service reaches production. 53 Due to the

complexity of all the connectivity and dependencies in a cloud-based setting,

testers cannot build their own on-premises testing systems to be as complete

as production systems. Stricter data regulations under GDPR also make it more

difficult to test with real data.

Alex Martins, CTO for continuous testing at CA Technologies, thinks this

testing problem will be solved by management and process rather than tools.

Modern companies don’t look at production as a big event where they cut

things over and another team handles it and really doesn’t understand what

the code does. Instead, DevOps and continuous delivery practices provide a

much more holistic approach to application deployment and management.

“I don’t think we need more tooling. We need a different way to manage

production,” Martins said. “It’s really more of a mindset change, and a process

and culture change. The tools are out there today [for] building environments

into cloud. Leveraging containers and proper orchestration is a start, but it

takes a lot of effort to make it happen and to make it get to any sort of ROI, but

it’s possible. The technology allows you to do that today,” said Martins.

Matt Swann, CTO at StubHub, said that testing in production is part of his

company’s daily routine. When moving teams from “standard testing” to new

methodologies for testing in production he suggests:

• Clear communication: Help teams understand the new process, its

benefits and their role in it.

• Start small and collect some wins: Start investing time, training and

money in one or two teams. Gather details of what worked and what didn’t

http://www.thenewstack.io
https://www.linkedin.com/in/alexmartinsit/
http://bit.ly/2o3uhkV
https://www.linkedin.com/in/mattswann/
https://www.stubhub.com/

104Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

DISASTER RECOVERY FOR MICROSERVICES

work,the wins and fails, and adapt the process to fit the organization.

• Scale: As your initial teams begin to thrive, roll out the changes to other

teams.

This is good advice, whether you’re rolling out new processes and practices, or

trying out new tools. Communication and collaboration are at the heart of

DevOps, and the foundation for any successful microservices migration.

Microservices are still a nascent technology with a fast evolving ecosystem of

tools and patterns for implementation. But it is certain that the tools are built

for people and teams familiar with DevOps practices. The services, platforms

and developer tools reflect the practices of developer teams; the experience of

the people on the team, workflows and business objectives. The best approach

for one organization may be the absolute wrong way for another. By starting

small, iterating and, above all, evaluating and adapting best practices and

patterns for its own needs, an organization may make a successful transition

to a microservices architecture that is performant, resilient and secure and

allows teams to move and innovate faster.

http://www.thenewstack.io

105Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER 11

A Case Study of How
WeatherBug Uses
Microservices Without
Containers

S
ince 2015, weather forecasting service WeatherBug has been using

microservices in its IT infrastructure to dramatically simplify and

transform its old, large, home-built monolithic applications by

turning their components into lighter, more manageable systems.

But instead of running microservices the common way — inside of containers

— WeatherBug has been taking an innovative approach and running them

directly on Amazon Web Service’s Elastic Compute Cloud (Amazon EC2)

platform without containers, simplifying its deployment even more. It may

have been an unusual road, but it has turned out to be the correct path for the

company and for the IT problems he and his staff were trying to correct, said

Edward Dingels, senior vice president of engineering for WeatherBug.

WeatherBug, which has been around since 1993, was built on large, database-

driven applications dating back to the company’s founding, Dingels said. That

meant that many of them were unwieldy and massive and dated back to before

mobile phones and applications were ever envisioned. The old monolithic

applications made it difficult to update or modify them quickly, which had

become a necessity in the world of mobile devices and the many applications

consumers want to use on them.

http://www.thenewstack.io
https://www.weatherbug.com/
https://www.linkedin.com/in/edingels/

106Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF HOW WEATHERBUG USES MICROSERVICES W/O CONTAINERS

By 2015, it was clear that changes were needed, so the company began

exploring alternatives.

“We were finding that doing a new deployment was hard, so a lot of our

rationale [for a new architecture] came down to increasing the speed and the

pace of innovation,” Dingels said. When they first looked at microservices, it

became clear that they could be used to decouple the development processes of

different development teams, so the needed applications and services could be

scaled independently and operate more autonomously.

That was the beauty of microservices — they break apart monolithic

applications in a way that allows development to be more efficient, and deliver

code into production at a much faster rate. That’s also when the idea of using

EC2 arose.

Building Directly on EC2
EC2 is an environment that lets companies use microservices without

necessarily having to add the extra overhead of a container platform such as

Docker, Dingels said.

“If you look at AWS, there’s a number of different ways you can run compute,”

he said. With EC2, you have a host and a host environment that can run pretty

much anything, even microservices. That structure is a virtual host, which is

just like a container but without the formal container.

For WeatherBug, microservices help connect the various mobile and desktop

applications it offers to new features, configurations, code and changes that

happen on the fly within the company’s infrastructure. That includes using

microservices to help applications get real-time information on a user’s

location to enable accurate weather details.

“Each one of these is independently-running services, independent pieces of

code that are running on top of EC2 and they’re not connected into a single

http://www.thenewstack.io
https://aws.amazon.com/ec2/

107Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF HOW WEATHERBUG USES MICROSERVICES W/O CONTAINERS

service,” Dingels said. “What’s key here is we’re breaking apart the functions

that our services do into the smallest possible elements that we can

independently deploy and iterate on.”

They could have done the migration using a container platform, but they were

happy to avoid the extra complexity. Using EC2, each of the microservices ends

up in its own auto-scaling group and can be managed independently from a

scale perspective.

“Now you might say we’re not taking advantage of Kubernetes and Docker

containers and the many advantages to using those,” said Dingels. “They are

definitely on our roadmap, but I don’t believe you need to do them to use

microservices.”

If someone says that containers must be used to run microservices, Dingels

said, “I would argue that they’ve limited themselves. The whole idea of

microservices is that you don’t limit your technology choices.”

By breaking up applications into smaller components with microservices, it

allows those components to be easily verified and deployed elsewhere with less

disruption to other code.

Immediate Results
After the first few weeks of the original microservices discussions in early

2015, it became clear to the WeatherBug team that it was the right strategy to

use to dramatically overhaul their development processes.

“It almost immediately made sense,” said Dingels. “It wasn’t like there was a

large amount of convincing to do. Everybody was feeling the problem, which

was really around deployment and regression” and how much time it took

doing those things with the monolithic applications from the past. “What we

found was that breaking apart the services and deploying them on AWS made

perfect sense and that it worked very well without necessarily putting in

http://www.thenewstack.io

108Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF HOW WEATHERBUG USES MICROSERVICES W/O CONTAINERS

Docker, which was the only thing available at the time.”

Significant improvements have been seen inside WeatherBug since the move

to microservices began, including faster release cadences — multiple times

per week compared to months — as well as increasing code stability and

reducing troubleshooting time and QA regression time, according to Dingels.

“We did find that regression can be done extremely quickly when you’re

dealing with microservices.”

Today, about 99 percent of the old monolithic applications inside the

company have been transformed using microservices as part of an ongoing

process, and for several years, all new coding has been done using them as

well. “There are some remnants of those monoliths that still exist, legacy

pieces, but it just hasn’t made sense to go back in and break them apart yet,”

said Dingels.

It’s almost impossible to determine how much the switch to microservices has

cost WeatherBug, since the work has been progressive rather than starting and

ending on specific dates, Dingels said. “We were kind of doing the work as the

plane was flying.”

Challenges and Ways to Improve
There were some challenges along the way, including some they expected and

some that were unexpected. First, dependencies became harder to map because

the code was being separated, but that could be resolved using new tools such

as X-Ray from AWS, which automates the process, said Dingels. In addition,

the log files that were helpful to find problems in the monoliths were not

effective with microservices due to how the code was being segmented. But

other tools, including the ELK stack, could help resolve those problems.

Yet despite its container-free approach so far, Dingels said that WeatherBug

could one day also end up deploying Docker or Kubernetes or another container

http://www.thenewstack.io
https://aws.amazon.com/xray/
https://www.elastic.co/blog/getting-started-with-elk

109Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

A CASE STUDY OF HOW WEATHERBUG USES MICROSERVICES W/O CONTAINERS

management system, because there are some potential benefits to those

approaches as well.

For some uses, a container management system could increase the company’s

IT capabilities even more by providing better utilization of its underlying

infrastructure by introducing containers. Another benefit is that containers

would make it easier to quickly scale when using Amazon EC2, he said.

“Getting new compute resources takes more time running on EC2 alone than it

does using containers,” said Dingels. “Now you can imagine that with weather

we see a pretty wide variation in usage, especially depending on where our

users are located.”

“I would say it’s on the roadmap,” he said of a future container system

deployment as well. “One of the things we have found is that it really comes

back to where you’re going to get the most bang for your buck.”

http://www.thenewstack.io

110Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES 110

One of the most challenging aspects of migrating to a

microservice architecture is deciding which pieces of

the monolith to break off first into separate services.

Architects must understand the business objectives,

how the services function and how they will relate to the rest of the

whole. Then, the team faces more challenges once services are up and

running. Operational complexity increases because each service may

have its own languages, toolsets and infrastructure.

To help solve these and other problems that arise when moving to

microservices, a new set of commercial monitoring solutions, such as

Dynatrace, have emerged on top of existing open source tools like

Prometheus. By pulling in data from multiple sources via an API, such

monitoring tools can provide a complete view of an application, from

its traffic patterns on the network and the database statements it

executes, to which container, platform and host a service runs on.

“Once you install Dynatrace, we’re monitoring and tracking every

single service, process, host, log, and also end user,” said Andreas

Grabner, DevOps activist, Dynatrace. “We have a complete live

dependency map from your complete environment.”

This comprehensive view can help architects determine how best to

further break apart the codebase, for example. It can also help identify

the technical root cause of a particular problem and provide additional

context, such as how many users are impacted and in what regions to

When Breaking Up
a Monolith, Consider Data

as Much as Code

https://soundcloud.com/thenewstackmakers/when-breaking-up-a-monolith-consider-data-as-much-as-code
http://bit.ly/2v5jY2N

111Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

WHEN BREAKING UP A MONOLITH, CONSIDER DATA AS MUCH AS CODE

Andreas Grabner has 20+ years of experience as a software
developer, tester and architect and is an advocate for high-
performing cloud-scale applications. He is a regular contributor to

the DevOps community, a frequent speaker at technology conferences and
regularly publishes articles on blog.dynatrace.com.

help remediate the problem faster, Grabner said.

“Commercial offerings on top of open source tools give you confidence

that these tools will last, and are not just supported by a small

community that may no longer exist in a year,” Grabner said. “They

also give you the best practices to support the services.”

One emerging best practice for breaking up a monolith into

microservices that Dynatrace has observed among its customers is to

give each service its own data store. If an application was supported by

a big monolithic relational database, then an organization must first

decide how to extract the data that is relevant for that service into its

own data store.

“Sometimes when people talk about breaking the monolith into

services, they only think about the code,” Grabner said. “But, it’s

important also where the data lives that this service is depending on.

You have to treat your current data store just as another monolith.”

Learn about use cases for cloud native monitoring tools, best practices

for breaking down the database monolith, and how to tap into old and

new systems to get the information teams need to make business-

critical changes to an application. Listen on SoundCloud.

http://www.thenewstack.io
https://twitter.com/grabnerandi?lang=en
https://www.dynatrace.com/news/blog/
https://twitter.com/grabnerandi?lang=en
https://soundcloud.com/thenewstackmakers/when-breaking-up-a-monolith-consider-data-as-much-as-code

112Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

CHAPTER #: CHAPTER TITLE GOES HERE, IF TOO LONG THEN...

SECTION 04

BIBLIOGRAPHY
The list of source materials for this ebook is a good starting point to gain
a new perspective or to dig deeper into how to build, deploy and manage
cloud native microservices.

http://www.thenewstack.io

113Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Bibliography
1. Global Microservices Trends

by Dimensional Research and LightStep, April 2018.

A report on the challenges of performance monitoring in microservices environ-

ments, including insights on how to address these challenges.

2. The DZone Guide to Microservices: Breaking Down the Monolith

by DZone, 2017.

A detailed analysis of microservices and how they are built and deployed.

3. Philipp Strube, Director of Technology for Container Solutions

in a media and analyst briefing at KubeCon + CloudNativeCon Europe,

Copenhagen, May 2018.

After his law studies at the University of Bonn in Germany, Strube has

spent over a decade as a serial entrepreneur, to include founding cloud-

Control and Kubestack.com.

4. See #2

5. Containers and Microservices: Two Peas in a DevOps Pod

by Matt Chotin, senior director of technical evangelism at AppDynamics,

The New Stack, March 16, 2018.

Chotin describes how containers and microservices offer synergies when

the right monitoring and security management tools are adopted.

6. Microservices: From Design to Deployment

by NGINX, 2016.

A guide that describes microservices deployments in detail and how the archi-

tectural style can improve applications’ speed, flexibility and stability.

7. See #1

http://www.thenewstack.io
https://go.lightstep.com/global-microservices-trends-report-2018
https://dimensionalresearch.com/
https://lightstep.com/
https://dzone.com/storage/assets/7852543-dzone-microservicesguide-2017.pdf
https://dzone.com/
https://twitter.com/pst418?lang=en
https://container-solutions.com/
https://thenewstack.io/containers-microservices-two-peas-devops-pod/
https://twitter.com/mchotin?lang=en
http://bit.ly/2n4bAwi
https://www.nginx.com/resources/library/designing-deploying-microservices/
https://www.nginx.com/
https://twitter.com/pst418?lang=en
https://twitter.com/mchotin?lang=en

114Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

8. How to Build and Scale with Microservices

by AppDynamics, 2016.

A how-to ebook that describes what microservice architectures consist of, with

specific instructions on how to build and deploy them to scale.

9. Red Hat’s Chief Architect of Cloud Development Talks Traffic

Management

The New Stack Makers podcast, with Christian Posta, chief architect for

cloud development at Red Hat, July 30, 2018.

The next big problem Kubernetes adopters will face once they’ve gotten

their systems containerized is traffic management. The open source Istio

project is the planned system for handling it all.

10. Bridget Kromhout on How Microservices Affect Managing People

The New Stack Makers podcast with Bridget Kromhout, principal cloud

developer advocate at Microsoft, May 2, 2018.

Many traditional management styles and principles hardly apply to

engineers who build, deploy and manage microservice architectures. A

new collaborative culture of communication and responsibility must

emerge for successful deployments.

11. See #10

12. Five Things to Know Before Adopting Microservice and Container

Architectures

by Jonathan Owens, site reliability engineer at New Relic, The New Stack,

April 5, 2018.

A discussion of what microservices and container deployments involve,

based on Owens’ deployment-management experiences.

http://www.thenewstack.io
https://www.appdynamics.com/lp/ebook-how-to-build-scale-with-microservices/
http://bit.ly/2n4bAwi
https://thenewstack.io/red-hats-chief-architect-of-cloud-development-talks-traffic-management/
https://thenewstack.io/red-hats-chief-architect-of-cloud-development-talks-traffic-management/
https://twitter.com/christianposta
http://red.ht/2uJGuQo
https://thenewstack.io/bridget-kromhout-on-how-microservices-affect-managing-people/
https://twitter.com/bridgetkromhout/status/1003625151521583104
http://bit.ly/2h30eoP
https://thenewstack.io/5-things-to-know-before-adopting-microservice-and-container-architectures/
https://thenewstack.io/5-things-to-know-before-adopting-microservice-and-container-architectures/
https://twitter.com/intjonathan?lang=en
http://bit.ly/2u3HCPd
https://twitter.com/christianposta
https://twitter.com/bridgetkromhout/status/1003625151521583104
https://twitter.com/intjonathan?lang=en

115Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

13. What is a Full Stack Developer?

by Laurence Gellert, software developer at Launch Gate, Laurence

Gellert’s blog, August 1, 2012.

This post describes qualities successful full stack developers should have,

including expertise in multiple software layers and programming

languages, passion and curiosity about software technology in general

and a mindset that embraces cross-team collaborations.

14. Tackling Operational Serverless and Cross-Cloud Compatibility

The New Stack Analysts podcast with Dr. Donna Malayeri, product

manager at Pulumi, June 21, 2018.

Dr. Malayeri addresses concerns and challenges with serverless deploy-

ments and the importance of multicloud architectures for redundancy

and agility.

15. Ben Sigelman, co-founder at LightStep

in a media and analyst briefing at KubeCon + CloudNativeCon Europe,

Copenhagen, May 2018.

A former senior staff software engineer at Google, Sigelman is the

cofounder and CEO of LightStep, which offers monitoring solutions for

software running on web, mobile, monolithic and microservices

platforms.

• Cloud-Native Application Performance

Monitoring Requires a New Approach

by Scott Kelly, product marketer at Dynatrace, Dec. 11, 2017.

Learn why APM is essential for dealing with the complexity of a

microservices architecture and containers and how monitoring differs

for cloud native applications.

SPONSOR RESOURCE

http://www.thenewstack.io
https://www.laurencegellert.com/2012/08/what-is-a-full-stack-developer/
https://twitter.com/laurencegellert?lang=en
https://launchgatesolutions.com/
https://thenewstack.io/tackling-operational-serverless-and-cross-cloud-compatibility/
https://twitter.com/lindydonna?lang=en
http://bit.ly/2OskRcW
https://twitter.com/el_bhs?lang=en
https://lightstep.com/
https://twitter.com/laurencegellert?lang=en
https://twitter.com/lindydonna?lang=en
https://twitter.com/el_bhs?lang=en
https://www.dynatrace.com/news/blog/cloud-native-application-performance-monitoring-requires-new-approach/
https://www.dynatrace.com/news/blog/cloud-native-application-performance-monitoring-requires-new-approach/
https://twitter.com/scottfkelly
http://bit.ly/2v5jY2N
https://twitter.com/scottfkelly

116Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

16. Pattern: Database Per Service

by Chris Richardson, CEO and founder at Eventuate, Microservices.io, 2017.

This article outlines database structures for microservices architectures

in a schematic and detailed way.

17. What is a Data Lake?

by Amazon Web Services, 2018.

A description of how a data lake serves as a data repository for all data, both

structured and unstructured.

18. “Cloud-Native Application Patterns” in “CI/CD With Kubernetes”

by Janakiram MSV, principal analyst at Janakiram & Associates, The New

Stack, June 2018.

In this chapter of the ebook, Janakiram MSV describes how DevOps sets

policies that determine how Kubernetes manages resources, and offers

details about cloud native patterns.

19. Where PaaS, Containers and Serverless Stand in a Multi-Platform

World

by Cloud Foundry Foundation with ClearPath Strategies and Pivotal, June

2018.

Based on the responses of 600 IT decision makers, this report covers trends

affecting multiplatform deployments of cloud native architectures.

20. Why Microservices Running in Containers Need a Streaming Platform

by Paul Curtis, principal solutions engineer at MapR, The New Stack,

December 20, 2017.

This article shows how a streaming platform can solve common issues

experienced in the data pipeline when running microservices in

containers.

21. See #20

http://www.thenewstack.io
http://microservices.io/patterns/data/database-per-service.html
https://twitter.com/crichardson
https://eventuate.io/
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://aws.amazon.com/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://twitter.com/janakiramm?lang=en
https://www.janakiram.com/
https://www.cloudfoundry.org/multi-platform-trend-report-2018/
https://www.cloudfoundry.org/multi-platform-trend-report-2018/
http://bit.ly/2ESwPrk
http://www.clearpath-strategies.com/
http://bit.ly/2sia1Ok
https://thenewstack.io/microservices-running-containers-need-streaming-platform/
https://twitter.com/paul_mapr
https://mapr.com/
https://twitter.com/janakiramm?lang=en
https://twitter.com/paul_mapr
https://twitter.com/crichardson

117Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

22. Service Discovery: 6 questions to 4 experts

by HighOps, May 7, 2015.

An article that outlines how leaders in the field define the key aspects and bene-

fits of service discovery.

23. Kublr Offers Kubernetes for the Enterprise

by Susan Hall, The New Stack, June 8, 2017.

Kubernetes service providers all seem to have their own niche, such as

application management on top of Kubernetes. Kublr is focused on the

needs of enterprises.

24. “Kubernetes Security Patterns” in “Kubernetes Deployment & Security

Patterns”

by Dr. Chenxi Wang, managing general partner at Rain Capital

Management, The New Stack, February 2018.

This chapter outlines best practices for security management of

Kubernetes platforms by covering login privileges, user authentication,

container isolation, compromised logins and best practices and policies.

25. DevOps and Security: How to Overcome Cultural Challenges and

Transform to True DevSecOps

by Mike D. Kail, an independent technical advisor, The New Stack,

January 22, 2018.

DevOps and DevSecOps do not mean much if organizations fail to ensure

they have fostered a culture conducive to the creation of secure code

early in the software production pipeline.

26. Defining the Perimeter in a Microservices World

by Twain Taylor, for Twistlock, The New Stack, February 12, 2018.

Security perimeters for microservices are complex, yet they offer levels

of security previously unavailable for older platforms.

http://www.thenewstack.io
https://highops.com/insights/service-discovery-6-questions-to-4-experts/
https://highops.com/
https://thenewstack.io/kublr-offers-kubernetes-enterprise/
https://twitter.com/hallsd?lang=en
http://www.twistlock.com/wp-content/uploads/2018/03/TheNewStack_Book2_KubernetesDeploymentAndSecurityPatterns-copy.pdf
http://www.twistlock.com/wp-content/uploads/2018/03/TheNewStack_Book2_KubernetesDeploymentAndSecurityPatterns-copy.pdf
https://twitter.com/chenxiwang?lang=en
https://www.raincapital.com/firm/
https://www.raincapital.com/firm/
https://thenewstack.io/devops-security-overcome-cultural-challenges-transform-true-devsecops/
https://thenewstack.io/devops-security-overcome-cultural-challenges-transform-true-devsecops/
https://twitter.com/mdkail?lang=en
https://thenewstack.io/defining-perimeter-microservices-world/
https://twitter.com/twaintaylor
http://bit.ly/2sOzS1A
https://twitter.com/chenxiwang?lang=en
https://twitter.com/mdkail?lang=en
https://twitter.com/twaintaylor
https://twitter.com/hallsd?lang=en

118Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

27. Ten Priorities for Container Management and DevOps in Production

and at Scale in 2018

by Enterprise Management Associates (EMA), February 2018.

Based on input from 300 U.S. enterprises, this report offers analysis, trends and

guidance for using DevOps to build container infrastructures at scale.

28. Security Differences: Containers vs. Serverless vs. Virtual Machines

by Vince Power, for Twistlock, The New Stack, August 7, 2018.

The security advantages and disadvantages of containers, serverless

platforms and virtual machines are compared and contrasted.

29. See #26

30. See #26

31. Security in the Modern Data Center

by Nitzan Niv, a system architect at Alcide, The New Stack, Feb. 27, 2018.

Security for multiplatform and multicloud environments has become enor-

mously complex: Security tools and practices must rise to the challenge by

becoming at least as agile and efficient as the platforms they support.

32. Making a Secure Transition to the Public Cloud

by Arul Elumalai, James Kaplan, Mike Newborn and Roger Roberts, of

McKinsey & Co., January 2018.

McKinsey offers four practices it says are critical

for organizations to follow after migrating their

data and applications to a public cloud.

• CNCF Cloud Native Interactive Landscape

by the Cloud Native Computing Foundation (CNCF)

A detailed, interactive directory of cloud native products, services and open

source projects.

SPONSOR RESOURCE

http://www.thenewstack.io
http://www.enterprisemanagement.com/research/asset.php/3575/Ten-Priorities-for-Container-Management-and-DevOps-in-Production-and-at-Scale-in-2018---EMA-Top-3-Report-and-Decision-Guide-for-Enterprise
http://www.enterprisemanagement.com/research/asset.php/3575/Ten-Priorities-for-Container-Management-and-DevOps-in-Production-and-at-Scale-in-2018---EMA-Top-3-Report-and-Decision-Guide-for-Enterprise
https://www.enterprisemanagement.com/
https://thenewstack.io/security-differences-containers-vs-serverless-vs-virtual-machines/
https://www.linkedin.com/in/vincejpower/
http://bit.ly/2sOzS1A
https://thenewstack.io/security-modern-data-center/
https://il.linkedin.com/in/nitzan-niv-306642b
http://bit.ly/2zazqgJ
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/making-a-secure-transition-to-the-public-cloud
https://www.linkedin.com/in/arulelumalai
https://www.linkedin.com/in/kaplanjames/
https://www.linkedin.com/in/mikenewborn/
https://www.linkedin.com/in/roger-roberts-4b263/
https://www.mckinsey.com/
https://il.linkedin.com/in/nitzan-niv-306642b
https://www.linkedin.com/in/arulelumalai
https://www.linkedin.com/in/kaplanjames/
https://www.linkedin.com/in/mikenewborn/
https://www.linkedin.com/in/roger-roberts-4b263/
https://landscape.cncf.io/
http://bit.ly/2GBO5Dd
https://www.linkedin.com/in/vincejpower/

119Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

33. Learning Paths on AWS: Break the Monolith

by Amazon Web Services, 2018.

Learn how to shift from a monolithic platform to a microservices platform using

an application load balancer (ALB).

34. Choosing a Microservices Deployment Strategy

by Chris Richardson for NGINX, February 10, 2016.

Several deployment patterns for microservices have emerged, including

service instance per virtual machine and service instance per container,

while AWS Lambda offers an option for serverless deployments.

35. The Hardest Part About Microservices: Your Data

by Christian Posta, Christian Posta’s blog, July 14, 2016.

Data and database management remain an often neglected component

of microservices; reassessing your data and domain can help you better

create microservice-based systems.

36. The Forrester Wave: Database as a Service Q2 2017

by Forrester Research via Redis Labs, April 24, 2017.

Forrester analyzes, compares and critiques 13 of the leading Database as a

Service (DBaaS) vendors, based on 30 sets of criteria.

37. “DevOps Patterns” in “CI/CD with Kubernetes”

by Rob Scott, site reliability engineering architect at ReactiveOps, The

New Stack, 2018.

This first section of the ebook traces the history of DevOps and its effects

on cloud native architectures, and also covers how Kubernetes has

reshaped DevOps.

http://www.thenewstack.io
https://aws.amazon.com/getting-started/container-microservices-tutorial/module-four/
https://aws.amazon.com/
https://www.nginx.com/blog/deploying-microservices/
https://twitter.com/crichardson
https://www.nginx.com/
http://blog.christianposta.com/microservices/the-hardest-part-about-microservices-data/
https://twitter.com/christianposta?lang=en
https://redislabs.com/docs/forrester-wave-database-service-q2-2017/
https://go.forrester.com/
https://redislabs.com/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://www.linkedin.com/in/robertjscott1/
https://www.reactiveops.com/
https://www.linkedin.com/in/robertjscott1/
https://twitter.com/christianposta?lang=en
https://twitter.com/crichardson

120Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

38. “Continuous Delivery with Spinnaker” in “CI/CD with Kubernetes”

by Craig Martin, senior vice president of engineering and operations at

Kenzan, The New Stack, 2018.

Modern application architecture releases should be frequent, fast and,

above all, boring. To this end, the growing tech movement to organize

software teams and technologies around the notions of DevOps has

created great interest in continuous delivery (CD) platforms.

39. Twistlock Makes Istio’s Security Layer More Robust, Easier to Monitor

by Liron Levin, chief software architect, and John Morello, chief tech-

nology officer, at Twistlock, The New Stack, June 7, 2018.

Combining Twistlock data analysis and Istio’s service mesh

management platform can improve microservices security

layers and their management across cloud deployments.

40. Characterizing the State of Microservices Adoption

The New Stack Makers podcast with Daniel Bryant, an independent

consultant, speaker and writer; and Matt Chotin, senior director of devel-

oper initiatives at AppDynamics, March 29, 2018.

A discussion about the state of the microservices market and the

business trends driving its adoption and growth.

41. The New DevOps: Site Reliability Engineering Comes of Age

by Kieran Taylor, senior director of product marketing at CA

Technologies, The New Stack, July 5, 2018.

A description of the emergence of site reliability engineers (SRE) and the

increasingly important role they play in DevOps for network and appli-

cation monitoring.

http://www.thenewstack.io
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://www.linkedin.com/in/craig-martin-24175637/
https://kenzan.com/
https://thenewstack.io/twistlock-makes-istios-security-layer-more-robust-easier-to-monitor/
https://www.linkedin.com/in/liron-levin-a6951b11/
https://twitter.com/morellonet
http://bit.ly/2sOzS1A
https://thenewstack.io/characterizing-the-state-of-microservices-adoption/
https://twitter.com/danielbryantuk?lang=en
https://twitter.com/mchotin?lang=en
http://bit.ly/2n4bAwi
https://thenewstack.io/the-new-devops-site-reliability-engineering-comes-of-age/
https://www.linkedin.com/in/kierantaylor
http://bit.ly/2o3uhkV
http://bit.ly/2o3uhkV
https://www.linkedin.com/in/kierantaylor
https://www.linkedin.com/in/liron-levin-a6951b11/
https://twitter.com/danielbryantuk?lang=en
https://twitter.com/mchotin?lang=en
https://www.linkedin.com/in/craig-martin-24175637/
https://twitter.com/morellonet

121Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

42. “Monitoring in the Cloud Native Era” in “CI/CD with Kubernetes”

by Ian Crosby, Maarten Hoogendoorn, Thijs Schnitger and Etienne

Tremel, of Container Solutions, The New Stack, 2018.

This ebook chapter describes how monitoring cloud deployments

running on container platforms must offer advanced levels of

observability and scalability in addition to traditional moni-

toring capabilities.

43. Netflix Conductor, a Microservices Orchestrator

by Viren Baraiya, engineering manager at Google, Netflix Tech Blog,

December 12, 2016.

This blog post describes how Netflix uses container orchestration and

microservices to help boost the time to delivery and stability of its

streaming services.

44. See #41

45. See #34

46. Building Microservices: Designing Fine-Grained Systems

by Sam Newman, O’Reilly Media, February 2015.

A description of the trials and tribulations associated with building

microservices, as well as the benefits the architectural style offers, while

providing many practical examples.

• Cloud Native Security: What It Means, Why

It’s Hard & How To Achieve It”

by Twistlock.

A white paper that outlines how to adopt a cloud native security strategy. This

involves thinking beyond the perimeter, securing all the clouds, integrating

security with CI/CD and supporting multiple deployment models.

SPONSOR RESOURCE

http://www.thenewstack.io
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://www.linkedin.com/in/iandcrosby/
https://twitter.com/moretea_nl
https://twitter.com/thijsschnitger?lang=en
https://nl.linkedin.com/in/etiennetremel
https://nl.linkedin.com/in/etiennetremel
https://container-solutions.com/
https://medium.com/netflix-techblog/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40
https://www.linkedin.com/in/virenb
http://bit.ly/2x5VLZD
https://www.safaribooksonline.com/library/view/building-microservices/9781491950340/?utm_source=oreilly&utm_medium=newsite&utm_campaign=20171219_programming_podcast_sam_newman_body_text_building_microservices
https://twitter.com/samnewman?lang=en
https://twitter.com/samnewman?lang=en
https://www.linkedin.com/in/virenb
https://www.linkedin.com/in/iandcrosby/
https://twitter.com/moretea_nl
https://twitter.com/thijsschnitger?lang=en
https://nl.linkedin.com/in/etiennetremel
https://www.twistlock.com/resources/cloud-native-security-means-hard-achieve/
https://www.twistlock.com/resources/cloud-native-security-means-hard-achieve/
http://bit.ly/2sOzS1A

122Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

BIBLIOGRAPHY

47. Managing Critical State: Distributed Consensus for Reliability

by Laura Nolan, site reliability engineer at Google, O’Reilly Media, 2017.

How site reliability engineers can keep systems running despite various

system failure risk, underscoring, among other things, the importance of

monitoring.

48. Paxos, a Really Beautiful Protocol for Distributed Consensus

by Mark Chu-Carroll, Good Math/Bad Math blog, January 30, 2015.

Discussion on the power of Paxos, a tool Chu-Carroll says helps devel-

opers “straddle the line between pure math and pure engineering.”

49. See #1

50. How Chaos Engineering Can Drive Kubernetes Reliability

by Jennifer Riggins, The New Stack, June 12, 2018.

The article discusses tools that use chaos theory, which has long been

applied in mathematics and computing, to help build and maintain

stability for Kubernetes deployments.

51. Build System Confidence with Chaos Engineering and GitOps

by Sylvain Hellegouarch, co-founder and CTO at ChaosIQ, Medium,

February 22, 2018.

Learn how Chaos Toolkit can be applied to ensure a system remains in a

steady state when, among other incidents, an application is no longer

connected to the database.

52. See #46

53. How To Do Microservices Integration Testing in the Cloud

by Alex Handy, The New Stack, August 6, 2018.

It’s nearly impossible to replicate data center environments, let alone

cloud services-based architectures. What’s a tester to do when it’s not

possible to build testing systems to be as complete as production systems?

http://www.thenewstack.io
https://landing.google.com/sre/book/chapters/managing-critical-state.html
https://twitter.com/lauraannenolan?lang=en
http://bit.ly/2x5VLZD
http://www.goodmath.org/blog/2015/01/30/paxos-a-really-beautiful-protocol-for-distributed-consensus/
https://twitter.com/markcc?lang=en
https://thenewstack.io/how-chaos-engineering-can-drive-kubernetes-reliability/
https://twitter.com/jkriggins?lang=en
https://medium.com/chaosiq/improve-your-cloud-native-devops-flow-with-chaos-engineering-dc32836c2d9a
https://twitter.com/lawouach?lang=en
https://www.chaosiq.io/
https://thenewstack.io/how-to-do-microservices-integration-testing-in-the-cloud/
https://www.linkedin.com/in/alhandy/
https://www.linkedin.com/in/alhandy/
https://twitter.com/lawouach?lang=en
https://twitter.com/jkriggins?lang=en
https://twitter.com/markcc?lang=en
https://twitter.com/lauraannenolan?lang=en

123Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Closing
The narrative about cloud native microservices starts with business objectives

and evolves through organizational structure and practices. As with containers

and Kubernetes, the adoption of microservices encompasses the drive for

faster and continuous deployment, and reaches its full potential with DevOps.

As teams grow, we now see more of this need for declarative infrastructure.

Application architectures built on DevOps practices work better and run with

less friction. The developer has more control over their own resources, and the

performance of the application becomes the primary focus. The better the

performance, the happier the end user and the more uniform the feedback

loop between users and developers. In this way, cloud native microservices

provide game-changing business value.

With great execution can come great results. But the opposite is also true.

There are barriers to overcome that may lead an organization to steer away

from microservices adoption. These challenges may be technical, such as

increased operational overhead and complexity, but just as often lie in

business and process decisions.

This ebook has been the first to follow The New Stack’s new approach to the

way we develop ebooks. In the process, we’ve found an emerging theme

centered on people and processes for the next ebooks in the series. Look for

books on serverless and cloud native DevOps still to come this year with

corresponding podcasts, in-depth posts and activities around the world

wherever pancakes are being served.

Thanks and see you again soon.

Alex Williams

Founder and Editor-in-Chief, The New Stack

http://www.thenewstack.io

124Ĵ GUIDE TO CLOUD NATIVE MICROSERVICES

Disclosure
The following companies mentioned in this ebook are sponsors of The New

Stack:

Alcide, AppDynamics, Aqua Security, Blue Medora, Buoyant, CA Technologies,

Chef, CircleCI, CloudBees, Cloud Foundry Foundation, Cloud Native Computing

Foundation, Google, InfluxData, LaunchDarkly, MemSQL, Mesosphere,

Microsoft, Navops, New Relic, OpenStack Foundation, PagerDuty, Pivotal,

Portworx, Pulumi, Puppet, Raygun, Red Hat, Rollbar, SaltStack, Stackery, The

Linux Foundation, Tigera, Univa, VMware, Wercker and WSO2.

http://www.thenewstack.io

thenewstack.io

https://www.thenewstack.io
https://www.thenewstack.io

	Sponsors
	Introduction
	Considerations
for a Microservices Transition
	Introduction to Cloud Native Microservices
	Business and Process Decisions for a Microservices Transition
	Redefining
Cloud Native to Focus on Business Value

	Deploy Microservices
	Migration Strategies for Microservices
	A Case Study of Questback’s Phased Approach to a Microservices Transition
	Microservices Security Strategy
	Deploying Microservices
	DevOps Practices for Microservices
	Automation Makes Microservices Security Practical to Deliver

	Managing Microservices in Production
	Microservices Monitoring
	Microservices Pricing
	Disaster Recovery for Microservices
	A Case Study of How WeatherBug Uses Microservices Without Containers
	When Breaking Up
a Monolith, Consider Data
as Much as Code

	Bibliography
	Bibliography
	Closing
	Disclosure

